抽象的心脏障碍在肌营养不良症中是经典的,其管理依赖于医疗药物。机械通气用于治疗呼吸衰竭,但会影响心脏功能。我们旨在研究杜钦(DMD)患者(DMD)和贝克尔(BMD)肌肉营养不良的患者心脏功能的自然史(HMV)。我们审查了在我们机构中遵循的DMD和BMD患者的图表,以在基线时在HMV启动和超声心动图数据上获得通风设置,并结束后跟进,以及发作心脏事件和胸腔机械并发症。我们分析了心脏事件的累积发生率以及超声心动图参数的演变及其与通风设置的关联。我们包括111例患者(101例DMD和10 BMD)。中位年龄为21岁[18-26],肺中值生命力(VC)的预测[10-24] 15%。所有患者均使用HMV,使用气管切开术进行了46%的通风。After a median follow up of 6.3 years, we found a slight decrease of the left ventricular ejection fraction (LVEF) (45% at end follow up vs 50% at baseline P = .019) and a stabilization of the LV end diastolic diameter indexed (LVEDD indexed 29.4mm/m 2 vs 30.7mm/m 2 at end follow up, P = .17).潮汐体积(VT)水平与LVEF下降的年率成反比(r = 0.29,p = .025)。左心房(LA)直径随机械通气(24mm vs 20mm,p = .039)降低,我们发现收缩期肺压的降低(35mm Hg vs 25mm Hg,P = .011)。心脏事件的累积发生率为12.6%。气胸发生在4%的患者中。继发于气管插件的低氧逮捕发生在4%的侵入性通气患者中。HMV无害,降低肺部压力,除了心脏保护药物外,还可以保护心脏的心脏。在HMV上DMD和BMD的患者中,心脏事件的累积发生率仍然适中,气胸发生率很少。
冰芯测量结果显示出多种大气中的CO 2变化(减少,减少或保持稳定),呈千禧一代北大西洋寒冷时期,称为Stadials。这些对比趋势的原因仍然难以捉摸。碳富含深海的通风可能会深刻影响大气中的CO 2,但其千禧一代的历史受到限制。在这里,我们提出了过去150,000年的良好高分辨率深度大西洋酸度记录,这显示了迄今为止五种迄今未发现的体型海洋通风模式,对深海碳存储和相关大气CO 2变化产生了不同的后果。我们的数据提供了观察性证据,以表明在大气CO 2显着上升时,强烈且通常广泛的南部海洋通风释放了大量的深海碳。相比之下,其他体积的特征是通过南大西洋和北大西洋的通风弱,促进了呼吸碳的积累,因此减少或逆转了深海碳损失,导致大气中CO 2的升高甚至下降。我们的发现表明,深海碳储存和大气CO 2的千禧年尺度变化是通过两个极性区域的相互作用的多种海洋通风模式调节的,而不是单独的南方海洋,这对于对过去和未来的碳循环调节对气候变化至关重要。
(https://awardsmanagement.nihr.ac.uk/s_login.jsp?dest=/apps/app_viewopportunity.jsp%3f appid appid%3D105112%26Nextlevel%3D1%3D1%26opportunityID%3D10082509)
用于实验室引擎盖排气管的火包装包裹,所有实验室罩管道排气管被认为是危险的,这是由于由代码定义的化学物质的健康类别。用代码安装了火灾阻尼器,但由于排气的危险性质而被禁止,允许使用燃料包裹。 请参阅U-M规格第220719节的机械系统绝缘材料,以了解消防包装产品的要求。 安装要求将根据通过建筑物的排气管路由而有所不同。 记录的工程师应与UM环境健康与安全协调,以逐项项目审查拟议的安装。 应保护暴露的火包裹绝缘材料免受物理损害,以确保保持绝缘的完整性。 可能需要进行隔热材料的其他外套或其他保护手段才能在管道运行的斑点区域中完成此操作,但整个系统可能不需要。 一个示例申请包括但不限于通过看门人的壁橱垂直路由的火管,环境服务可能会损坏使用MOP,桶,购物车等损坏绝缘的隔热材料。 此外,在其他非实验室危险排气应用中可能会考虑或需要使用火包,但是在发布竞标文件之前,需要对U-M设计团队以及U-M环境健康与安全进行审查。 排气风扇允许使用燃料包裹。请参阅U-M规格第220719节的机械系统绝缘材料,以了解消防包装产品的要求。安装要求将根据通过建筑物的排气管路由而有所不同。记录的工程师应与UM环境健康与安全协调,以逐项项目审查拟议的安装。应保护暴露的火包裹绝缘材料免受物理损害,以确保保持绝缘的完整性。可能需要进行隔热材料的其他外套或其他保护手段才能在管道运行的斑点区域中完成此操作,但整个系统可能不需要。一个示例申请包括但不限于通过看门人的壁橱垂直路由的火管,环境服务可能会损坏使用MOP,桶,购物车等损坏绝缘的隔热材料。此外,在其他非实验室危险排气应用中可能会考虑或需要使用火包,但是在发布竞标文件之前,需要对U-M设计团队以及U-M环境健康与安全进行审查。排气风扇
© 作者 2024。开放存取本文根据知识共享署名 4.0 国际许可进行授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可的链接,并指明是否做了更改。本文中的图片或其他第三方资料包含在文章的知识共享许可中,除非资料的致谢中另有说明。如果资料未包含在文章的知识共享许可中,且您的预期用途不被法定规定允许或超出允许用途,则需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。知识共享公共领域贡献豁免(http://creativecommons.org/publicdomain/zero/1.0/)适用于本文中提供的数据,除非数据来源中另有说明。
天花板下方的最高气温是隧道安全的重要参数。本研究分析了由自然通风隧道中双火源驱动的最大过量天花板气温的特征。进行了一系列的小型隧道火力实验,并具有不同的火灾分离距离和热量释放速率。还进行了基于同等虚拟起源的理论分析。结果表明,当两个火羽流到天花板之前合并时,仅存在一个峰值气温,而当两个火羽完全分离时,可以观察到两个峰值气温。隧道天花板以下的最高过量气温随着羽流合并区域的火灾分离距离的增加(S 当火力分离距离进一步增加(S> S CP)时,火灾分离距离对天花板下方的最高气温的影响非常有限。 此外,考虑到不同的羽流合并状态,建议使用同等火源的模型预测天花板以下的最大过量气温。 本研究有助于理解由双火驱动的烟气最大气温特性,而自然通风隧道中的热量相等。当火力分离距离进一步增加(S> S CP)时,火灾分离距离对天花板下方的最高气温的影响非常有限。此外,考虑到不同的羽流合并状态,建议使用同等火源的模型预测天花板以下的最大过量气温。本研究有助于理解由双火驱动的烟气最大气温特性,而自然通风隧道中的热量相等。
Takeshi Arashiro A,B,C,D, *,Maki Miwa E,Hidenori Nakagawa F,Junpei Takamatsu G,Kunihiro oba H,Satoshi Fujimi,Hitoshi Kikikuchi kikikuchi J,Takamasa iwasawa iwasawa kkan kan kan kan kan kan kan kan kan kan kan kan kan kan O,Takanori Asakura P,Takahiro Asami Q,Keiko Mizuno R,Manabu Sugita R,Torahiko Jinta S, Yusuke Nishida t , Hideaki Kato u , Kazuaki Atagi v , Taiki Hiro Nakano w , Takeya Tsutsumi x , Kent Doi y , Shu Okugawa x , Akihiro Ueda z , Akira Nakamura aa , Toru Yoshida ab , Kaoru Shimada-Sammori ac , Keiki Shimizu ac , Yasuo Fujita ad , Yasumi Okochi ae , Kentaro Tochitani af , Asuka Nakanishi ag , Hiroshi Rinka ah , daisuke taniyama ai,asase yamaguchi i,toshio uchikura aj,maiko matsunaga ak,hiromi aono al,masanari hamaguchi o,kentaro motoda am,kentaro motoda am,sohei nakayama p. ,Shigeki Fujitani AB,Maki Tsukahara A,Saki Takeda A,Ashley Stucky A,Tadaki Suzuki B, Chris Smith c, d, Martin Hibberd c, Koya Ariyoshi d, Yuji Fujino ao, ap, Yuzo Arima a, 1, Shinhiro Takeda m, ao, aq, 1, Satoru Hashimoto ao, aq, 1, Motoi Suzuki a, 1
通过对1:15比例隧道火灾试验数据的分析,研究了采用纵向通风方式的隧道中多车辆间的火灾蔓延特性。在此基础上,提出了一种简单的多火源隧道气体温度理论模型,并用于试验数据的分析。结果表明,对于位于火灾下游相同距离的物体(木桩),火灾沿隧道蔓延的速度越来越快。通过模型和全尺寸隧道火灾试验对多火源简化温度模型进行了验证。进一步利用该模型预测了火灾蔓延至第二和第三个物体的临界条件。与试验数据的对比表明,平均过热温度465 K(或等效入射热流密度18.7 kW/m 2 )可作为火灾蔓延的判据,并通过其他模型试验和全尺寸试验进一步验证了这一点。结果表明,临界火灾蔓延距离随热释放速率的增加而单调增加,随隧道周长的增加而减小。对于热释放速率相等的多火源,随着前两个火源间距的增加,第二个火源到第三个火源的临界火蔓延距离减小,但第一个火源到第三个火源的总火蔓延距离增大;如果下游火源处的总热释放速率大于前一个火源处的总热释放速率,临界火蔓延距离变大。