LVEF 有局限性。4 随着对 HF 综合征复杂性的认识不断提高,以及表征 HF 的临床、生物标志物、影像学、侵入性血流动力学和综合评分以及大数据分析工具的改进,LVEF 越来越被认为过于原始。但 LVEF 的批评者在任何情况下都没有提供 LVEF 的有效替代方案。数十年来 HF 治疗的进展仍然基于以 LVEF 降低为主要纳入标准的研究。因此,从这个角度来看,正如其他人最近所做的那样,7 我们提供了一个务实的理由,说明为什么使用超声心动图测量 LVEF 并将 HF 归类为射血分数降低的 HF(HFrEF,LVEF ≤ 40%);射血分数轻度降低的 HF(HFmrEF,LVEF 4 1 –49%)和射血分数保留的 HF(HFpEF,LVEF ≥ 50%)2 仍然是评估疑似或明显 HF 患者的主要临床工具,直到出现更好的可操作的替代方案(图 1)。
大多数患者在急性心肌梗塞(MI)中幸存下来。然而令人鼓舞的发展具有一定的缺点:心力衰竭(HF)的患病率正在增加,受影响的患者的合并症往往会加剧医疗保健系统的经济压力并阻碍有效的医疗管理。心脏在结构和/或功能上的病理变化,称为心肌重塑,对患者结局产生了重大影响。诸如糖尿病,慢性阻塞性肺部疾病,女性以及其他人在“通往HF之路”上的疾病进展等危险因素。尽管有与心肌重塑有关的一般途径相互作用的HF药物,但仍缺乏靶向药物,并且患者风险地层较差。因此,在这篇综述中,我们强调了病理生理基础,当前的诊断方法和可用的治疗方法,用于MI后心脏重塑。我们进一步旨在提供一个路线图,以开发改进的风险层次以及新颖的医学和介入疗法。
客观,通过图像指导技术改善床旁神经外科手术程序安全性和准确性的主要障碍是缺乏针对移动患者的快速部署,实时的注册和跟踪系统。这种缺陷解释了外部室排水的徒手放置的持续性,该室外排水口具有不准确定位的固有风险,多次通过,流血出血以及对邻近脑实质的伤害。在这里,作者介绍并验证了无框立体神经纳维加菌和导管放置的新型图像登记和实时跟踪系统。方法使用计算机视觉技术来开发一种几乎连续,自动和无标记的图像注册的算法。该程序融合了受试者的预处理CT扫描中的3D摄像头图像(快照表面),并且通过人工智能驱动的重新校准(Real-Track)进行了患者运动。计算了5个发生串行运动(快速,缓慢的速度滚动,俯仰和偏航运动)的5个尸体头部的表面注册误差(SRE)和目标注册误差(TRE),以及几个测试条件,例如有限的解剖学暴露和不同的受试者照明。使用模拟的无菌技术将六个导管放在每个尸体头(总计30个位置)中。过程后CT扫描允许比较计划的和实际导管位置,以进行用户错误计算。的结果注册对于所有5个尸体标本都成功,导管放置的总体平均值(±标准偏差)SRE为0.429±0.108 mm。TRE的精度在1.2毫米以下保持在1.2 mm的范围内,整个标本运动的低速和高速滚动,俯仰和偏航的速度最高,重新校准时间最慢,为0.23秒。当样品被覆盖或完全不覆盖时,SRE没有统计学上的显着差异(p = 0.336)。在明亮的环境与昏暗的环境中进行注册对SRE没有统计学上的显着影响(分别为p = 0.742和0.859)。对于导管放置,平均TRE为0.862±0.322 mm,平均用户误差(目标和实际导管尖端之间的差异)为1.674±1.195 mm。结论这个基于计算机视觉的注册系统提供了对尸体头的实时跟踪,其重新校准时间少于四分之一的一秒钟,并具有亚毫升准确性,并启用了毫米准确性的导管放置。使用这种指导床旁心室造口术可以减少并发症,改善安全性并将其推断到清醒,非肌化患者中的其他无框立体定向应用。
评估了临床前研究和临床研究的方法,以突出尚待回答的知识差距,以及将这些策略正确转化为临床环境所需的必要步骤。导致心脏自主神经失衡,其特征是慢性交感神经和副交感神经戒断,降低心脏电生理学并促进心室心律失常。因此,针对交感神经不平衡的神经调节干预措施已成为有希望的抗心律失常策略。这些策略针对心脏神经的不同部分,直接或间接恢复心脏自主语调。这些干预措施包括对交感神经递质和神经肽,心脏交感神经神经神经,胸腔硬膜外麻醉以及脊髓和迷走神经刺激的药理阻滞。一再证明神经调节策略是非常有效且非常有前途的抗心律失常疗法。然而,我们对神经心理生理学的理解仍然有很大的余地,完善了当前的神经调节战略选择,并阐明了许多这些战略选择的慢性影响。
小梁形成是心室发育过程中的一个关键过程,它描述了心肌细胞突出到心室腔内形成称为小梁的复杂肌肉结构。该过程中的缺陷会导致各种人类疾病,例如左心室非致密化性心肌病和其他先天性心脏缺陷。已经确定了小梁形成的几种细胞机制,包括张力异质性诱导的心肌细胞选择、粘附连接的调节、去极化和分层。然而,控制小梁形成的分子机制仍然不太清楚。目的:之前,我们已经证明 Gpr126 是小鼠和斑马鱼小梁形成和心脏发育所必需的。Gpr126 是一种粘附 G 蛋白偶联受体,可自蛋白酶切为 N 端片段 (NTF) 和 C 端片段 (CTF)。在这里,我们表明 NTF 和 CTF 在小梁形成过程中控制不同的细胞过程。
图2从IVH患者的CSF中分离NSC样细胞。A分离后不同日期(DIV)的CSF衍生的NSC培养物的相位对比度显微照片。比例尺:100μm。 B,在Matrigel上生长的3种代表性NSC线的指数生长动力学。c,早期(0)和晚期(10)段的细胞的相对对比显微照片,在基质中生长。d,通过对早期(3)和晚期(7)通道的KI-67表达进行定量评估增殖。显示了代表性共焦部分。比例尺25μm。 E,早期(3)和晚(7)通道的CD133,CD24,CD34和CD45的流式细胞仪分析。条件之间没有显着差异。数据显示为5-7个独立生物样品的平均值±SEM。42周大的病例(粉红色符号)被排除在进一步分析之外。f,在早期和晚期与CD133共表达与CD24和CD34的共表达。g,从CSF获得的NSC样细胞和分离后13天后从CSF获得的代表性显微照片。比例尺:100μm。 H,通过从CSF获得的NSC样细胞流式细胞术和通过CSF和通道3的灌洗液进行的CD133分析。* p <.05
† 作者对这项工作的贡献相同摘要在这项研究中,我们描述了一种新颖的“放射组学”方法,用于超声心动图人工智能系统,该系统能够从每个超声心动图视频中提取数十万个运动参数。我们将该人工智能系统应用于预测接受植入式循环生命支持系统的心力衰竭患者术后右心室衰竭(RV 衰竭)的临床问题。术后右心室衰竭是左心室辅助装置 (LVAD) 患者短期死亡的最大单一因素;然而,预测哪些患者在术前有发生这种并发症的风险,仍然超出了该领域专家的能力。我们使用标准 10 倍交叉验证报告测试数据集的结果。仅使用术前超声心动图,使用斯坦福 LVAD 数据集训练的人工智能系统的 AUC 为 0.860(95% CI 0.815-0.905;n = 290 名患者)。我们进一步表明,我们的系统表现优于配备当代风险评分(AUC 0.502 - 0.584)和独立测量的超声心动图指标(0.519 - 0.598)的委员会认证临床医生。
1。荷兰莱顿莱顿大学医学中心的小儿心脏病学和解剖与胚胎学系。本作者对所提供的数据的可靠性和自由的各个方面负责及其讨论的解释。2。荷兰莱顿莱顿大学医学中心胸外科系。本作者对所提供的数据的可靠性和自由的各个方面负责及其讨论的解释。3。荷兰莱顿莱顿大学医学中心儿科心脏病学系。本作者对所提供的数据的可靠性和自由的各个方面负责及其讨论的解释。4。荷兰莱顿莱顿大学医学中心儿科心脏病学系。本作者对所提供的数据的可靠性和自由的各个方面负责及其讨论的解释。5。心脏病学和解剖与胚胎学系,荷兰莱顿莱顿大学医学中心。本作者对所提供的数据的可靠性和自由的各个方面负责及其讨论的解释。6。荷兰莱顿莱顿大学医学中心产科系。本作者对所提供的数据的可靠性和自由的各个方面负责及其讨论的解释。7。8。9。荷兰莱顿莱顿大学医学中心解剖与胚胎学系。本作者对所提供的数据的可靠性和自由的各个方面负责及其讨论的解释。荷兰莱顿莱顿大学医学中心儿科心脏病学系。本作者对所提供的数据的可靠性和自由的各个方面负责及其讨论的解释。荷兰莱顿莱顿大学医学中心心脏病学和解剖与胚胎学系。本作者对所提供的数据的可靠性和自由的各个方面负责及其讨论的解释。
a. AV 瓣膜功能 b. 评估左心室流出道 c. 根据评估和临床问题指示 VII. 考虑怀孕(有关进一步的讨论和管理,请参阅“怀孕问题”部分)(Warnes, 2008) A. 孕前心脏评估 1. 评估残留的血流动力学病变 2. 为唐氏综合症女性提供妊娠风险和预防措施建议 B. 对于已修复且没有重大残留缺陷的女性来说耐受性良好 C. 不建议肺动脉高压女性使用 参考文献: Backer CL, Stewart RD, Mavroudis C. 概述:完全房室管的历史、解剖、时机和结果。胸心血管外科研讨会 10:3-10,2007。 Backer CL, Stewart RD, Mavroudis C. 修复完全房室管的最佳技术是什么?胸心外科研讨会 19:249-257, 2007. Cetta, F: 房室间隔缺损。Warnes CA 编辑:成人先天性心脏病,牛津,2009,Wiley-Blackwell。Curley MAQ,Moloney-Harmon PA。婴儿和儿童重症监护护理,第 2 版,费城,2001,WB Saunders 公司。