从经济角度来看,耐久性是热冲压模具的关键因素。通过沉积新材料而不是更换来翻新模具是一种降低成本的有效方法。为此,通过定向能量沉积的方式将一种新开发的马氏体时效钢 (NMS) 熔覆在热作工具钢上。经过优化的回火后,对熔覆的 NMS 进行高温暴露以检查抗软化性能。利用光学显微镜 (OM)、X 射线衍射 (XRD)、扫描电子显微镜 (SEM)、俄歇电子能谱 (AES) 和透射电子显微镜 (TEM) 的组合,系统地表征了材料的微观结构演变。熔覆钢中的沉淀物被鉴定为 Laves 相。该相的粗化被认为是钢在高温下热软化的主要原因。还使用修订的 Langer-Schwartz-Wagner (LSW) 模型模拟了粗化行为,该模型与实验观察结果非常吻合。此外,成功应用了沉淀强化数学模型来评估钢的软化行为。该模型可用于预测所研究的工具钢在高温使用过程中的硬度/强度变化。2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
摘要:2 A.MyData Mission 3 A.1。情况分析4 A.2。对MyData全球战略2024-2026的影响6 B.实施,监视和报告6 C.战略领域和目标7 C.1。操作7 C.1.1。该协会在财务上具有可持续性和弹性8 C.1.2。团队流程高效且专业8 C.1.3。mydata的值是策划的,可见8 c.2。社区8 C.2.1。成员重视其MyData全球成员8 C.2.2。广泛的MyData社区活跃,生产性8 C.2.3。成员资格多样,代表9 C.3。政策9 C.3.1。实施欧盟数据政策使人们进入其9 C.3.2的中心。在全球出现的规则中嵌入了一种以人为中心的方法9 c.3.3。MyData与全球数据倡导运动9 C.4是显着的。市场10 C.4.1。MyData确定问题和解决方案10 C.4.2。业务模型已显示为10 C.4.3。技术解决方案已证明10
近年来,各种基于载体的药物输送系统的设计和制造策略已迅速建立并应用于癌症治疗。这些系统对当前的癌症治疗贡献巨大,但需要进一步发展以消除药物负载能力低和严重副作用等障碍。为了实现更好的药物输送,我们提出了一种基于分子结构的易于制造的药物自输送系统的创新策略,该系统可用于共输送姜黄素类化合物和喜树碱的所有含氮衍生物,以更好地靶向癌症治疗并最大限度地减少副作用。形成机制研究表明,喜树碱衍生物和姜黄素类化合物的刚性平面结构以及相关的离去氢使它们能够在适当的条件下组装成纳米颗粒。这些纳米颗粒在不同条件下表现出稳定的粒径(100纳米)和可调的表面电荷,从正常生理条件(pH 7.4)下的约-10 mV增加到酸性肿瘤环境下的+40 mV。此外,小鼠体内实验表明,与伊立替康(喜树碱衍生物)相比,联合给药的伊立替康姜黄素纳米颗粒显著增强了肺和胆囊的靶向性,改善了巨噬细胞清除逃逸,改善了结直肠癌治疗,消除了危及生命的腹泻,为更好的靶向化疗和临床转化带来了希望。最后,基于结构设计的药物自递送系统策略可能会激发更多类似的自递送纳米系统的研究和发现,以用于更广泛的药物应用。
有机材料(例如树皮和生物炭)可以是治疗雨水的有效过滤材料。但是,这种过滤器在保留微塑料(MPS)(一种新兴的雨水污染物)中的效率尚未得到充分研究。这项研究研究了通常与雨水相关的MP的去除和运输。将不同的MP类型(聚酰胺,聚乙烯,聚丙烯和聚苯乙烯)混合到25、50和100 cm长的水平树皮和生物炭过滤器的最初2 cm材料中。MP类型由25-900μm的球形和碎片形状组成。过滤器的水流为5 mL/min,持续一周,并通过μFTIR成像分析了MPS的总废料。为了获得更深入的见解,将一个100 cm的树皮过滤器副本分为10 cm段,并提取并计数每个段中的MPS。结果表明,在所有生物炭和树皮过滤器中,MP有效保留了> 97%。但是,无论滤波长度如何,在所有废水中都检测到MP。流出浓度分别在树皮和生物炭废水中测量5 - 750 MP/L和35-355 MP/L,> 91%的MP计数由小型(25μm)聚酰胺球形颗粒组成。将所有数据结合起来,使用更长的过滤器发现了平均MP浓度的降低,这可能归因于25和50 cm滤波器中的引导。树皮介质中MPS的ALYSES显示,大多数MP都保留在0-10 cm段中,但有些MPS进一步运输,其中19%的聚酰胺保留在80 - 90 cm段中。总体而言,这项研究表明,树皮和生物炭过滤器保留国会议员的有希望的结果,同时强调了系统堆积过滤器以减少污染雨水对环境的MP排放的重要性。
钒氧化还原流量电池(VRB)系统涉及复杂的多物理和多时间尺度相互作用,其中电解质流速在静态和动态性能中起关键作用。传统上,固定流量已用于操作方便。但是,在当今高度动态的能源市场环境中,根据运营条件调整流量可以为提高VRB能源转换效率和成本效益提供显着优势。不幸的是,将电解质流速纳入传统的多物理模型对于VRB管理和控制系统来说过于复杂,因为实时操作要求用于船上功能的低计算和低复杂模型。本文介绍了一种新型的数据驱动方法,该方法将流速集成到VRB建模中,增强了数据处理能力和VRB行为的预测准确性。所提出的模型采用封闭式复发单元(GRU)神经网络作为其基本框架,在捕获VRB的非线性电压段方面表现出了非凡的熟练程度。GRU网络结构经过精心设计,以优化模型的预测能力,流速被视为关键输入参数,以解释其对VRB行为的影响。模型改进涉及分析在VRB操作中在各种流速下获得的精心设计的模拟结果。还设计和进行了实验室实验,涵盖了电流和流速的不同条件,以验证所提出的数据驱动的建模方法。对几种最新算法进行了比较分析,包括等效电路模型和其他数据驱动的模型,证明了考虑流速的基于GRU的VRB模型的优越性。由于GRU在处理时间序列数据方面的出色能力,该模型在宽范围内提供了令人印象深刻的准确终端电压预测,低误差率不超过0.023 V(1.3%)。这些结果表明了所提出的方法的功效和鲁棒性,突出了对管理和控制系统设计的准确VRB建模中流速的新颖性和重要性。
拓扑量子材料的独特电子性能,例如受保护的表面状态和外来的准粒子,可以提供带有垂直磁各向异性磁铁的外部无磁场磁力切换所需的平面自旋偏振电流。常规自旋 - 轨道扭矩(SOT)材料仅提供平面自旋偏振电流,而最近探索的具有较低晶体对称性的材料可提供非常低的平面自旋偏振电流组件,不适用于能量固定的SOT应用。在这里,我们使用拓扑WEYL半候选牛头牛Tairte 4具有较低的晶体对称性,在室温下在室温下表现出大型的脱离平面阻尼样SOT。我们基于Tairte 4 /ni 80 Fe 20异质结构进行了自旋 - 扭矩铁磁共振(STFMR)和第二次谐波霍尔测量,并观察到大型平面外阻尼样的SOT效率。估计平面外旋转大厅的构成为(4.05±0.23)×10 4(ℏ⁄ 2 e)(ωm)-1,这比其他材料中报道的值高的数量级。
为了增强轨道几何维护计划并降低基础设施成本,准确预测由镇流器和子级别的循环负载引起的累积永久性轨道变形(沉降)对于铁路基础设施管理者至关重要。本文提出了一种新的方法,可以基于一项用于评估短期和长期轨道性能的混合方法研究的广泛参数研究,以降低计算成本来预测长期结算。将各种机器学习技术进行比较并采用用于开发预测模型,这些模型使用归档的压载轨道演示者的测量结果进行了验证。使用多个指标评估每个模型的性能和准确性,并进行了敏感性分析以识别有影响力的解释变量。值得注意的是,开发的随机森林模型与现场测量的定居数据表现出了良好的一致性。这种方法弥合了差距是数值模拟和经验数据,从而对永久轨道变形有了改进的整体理解。该方法具有在铁路轨道维护和更新管理的计算决策支持系统中实施的潜力。
需要高生产率和鲁棒性提高的代谢工程,以使木质纤维素生物量的可持续生物生产乳酸。乳酸是一种重要的商品化学化学物质,例如作为可生物降解聚合物的聚乳酸生产的单体。在这里,使用有理和模型的优化来设计二倍体的木糖发酵酵母酿酒酵母菌株以产生L-乳酸。通过删除ERF2,GPD1和CYB2的多种乳酸脱氢酶编码基因,将代谢通量转向乳酸。使用木糖作为碳源实现了93 g/l的乳酸,其产率为0.84 g/g。增加了木糖利用并减少乙酸合成,还从菌株中删除了PHO13和ALD6。最后,编码丙酮酸激酶的CDC19过表达,导致消耗的0.75 g乳酸/g糖的产率,当使用的底物是一种合成木质纤维素水解培养基时,含有六糖和乙酸和固定剂等合成木质纤维素水解培养基。值得注意的是,建模还为理解氧气在乳酸产生中的影响提供了潜在客户。从木糖中产生高乳酸,在氧气限制下可以通过氧化磷酸化途径减少的通量来解释。在对比度上,较高的氧气水平对乳酸的产生有益于合成水解培养基的乳酸,这可能是耐受抑制剂所需的ATP浓度较高。这项工作突出了酿酒酵母对木质纤维素生物量产生乳酸的潜力。
通过将光结合到下波长体积,光力学的微腔可以大大增强光和机械运动之间的相互作用。但是,这是以增加光损耗率的成本。因此,将基于微腔的光力系统放置在未解决的边带机制中,以防止基于边带的地面冷却。减少此类系统光损耗的途径是设计腔镜,即与机械谐振器相互作用的光学模式。在我们的工作中,我们分析了这样的光力学系统,其中其中一个镜子与频率很大,即悬挂的Fano镜子。此光力学系统由两种光学模式组成,这些光学模式与悬挂的Fano镜子的运动。我们制定了一个量子耦合模式描述,其中包括标准色散光学耦合以及耗散耦合。我们在线性状态下求解了系统动力学的兰格文方程,表明即使腔本身不在解析的边带机制中,但可以从室温下进行冷却,而是通过强光模式耦合来实现有效的侧带分辨率。重要的是,我们发现,需要针对有效激光衰减来适当分析腔输出光谱,以推断机械谐振器的声子占用。我们的工作还可以预测如何通过工程化Fano Mirror的特性来达到基于FANO的微博中非线性量子光学机械的制度。
能源弹性是能源政策和研究的重要焦点,因为能源系统正面临越来越多的挑战,例如由于可再生能源生产增加而导致的电力短缺,以及极端天气导致的停电风险。通常,在这些情况下,能源弹性侧重于基础设施和确保电力供应不受干扰。本文提出了一个关于弹性的补充观点,以家庭为研究弹性的起点。基于对多个学科弹性的理解,我们提出了家庭能源弹性的定义,可用于探索家庭如何在电力供应不稳定的情况下确保未来生活良好。此外,我们借鉴了能源富裕环境下未来家庭能源使用的当前想法(备用能源、能源效率、灵活性和能源自给自足),以创建一个探索家庭能源弹性的框架。我们发现不同想法之间存在多样性的潜力,而这种多样性并不总是存在于主流的未来能源使用愿景中。从家庭能源弹性的角度来看,我们希望挑战电力需求不可协商的观念,并揭示支持家庭在不确定的未来变得更具弹性的机会。