摘要:2 A.MyData Mission 3 A.1。情况分析4 A.2。对MyData全球战略2024-2026的影响6 B.实施,监视和报告6 C.战略领域和目标7 C.1。操作7 C.1.1。该协会在财务上具有可持续性和弹性8 C.1.2。团队流程高效且专业8 C.1.3。mydata的值是策划的,可见8 c.2。社区8 C.2.1。成员重视其MyData全球成员8 C.2.2。广泛的MyData社区活跃,生产性8 C.2.3。成员资格多样,代表9 C.3。政策9 C.3.1。实施欧盟数据政策使人们进入其9 C.3.2的中心。在全球出现的规则中嵌入了一种以人为中心的方法9 c.3.3。MyData与全球数据倡导运动9 C.4是显着的。市场10 C.4.1。MyData确定问题和解决方案10 C.4.2。业务模型已显示为10 C.4.3。技术解决方案已证明10
从经济角度来看,耐久性是热冲压模具的关键因素。通过沉积新材料而不是更换来翻新模具是一种降低成本的有效方法。为此,通过定向能量沉积的方式将一种新开发的马氏体时效钢 (NMS) 熔覆在热作工具钢上。经过优化的回火后,对熔覆的 NMS 进行高温暴露以检查抗软化性能。利用光学显微镜 (OM)、X 射线衍射 (XRD)、扫描电子显微镜 (SEM)、俄歇电子能谱 (AES) 和透射电子显微镜 (TEM) 的组合,系统地表征了材料的微观结构演变。熔覆钢中的沉淀物被鉴定为 Laves 相。该相的粗化被认为是钢在高温下热软化的主要原因。还使用修订的 Langer-Schwartz-Wagner (LSW) 模型模拟了粗化行为,该模型与实验观察结果非常吻合。此外,成功应用了沉淀强化数学模型来评估钢的软化行为。该模型可用于预测所研究的工具钢在高温使用过程中的硬度/强度变化。2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
© 作者 2022。本文根据知识共享署名 4.0 国际许可协议获得许可,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可的链接,并指明是否进行了更改。本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的致谢中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不被法定法规允许或超出了允许的用途,则您需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。
本文旨在提出一种配备储能装置的电网形成转换器与水力发电机之间的协调控制策略,以促进未来电力系统中转换器的频率支持。这样,就可以利用转换器系统的快速动态特性,同时最大限度地减少与转换器系统相关的储能要求。电网形成转换器频率控制器的拟议调整标准有助于转换器系统与水力发电机之间的自然协调。将所提出的控制策略的有效性与文献中现有的传统下垂方法进行了比较。最后,使用 PSCAD 中的详细时域仿真模型验证了分析结果。
在连续变量量子技术的背景下,高斯状态和操作通常被视为自由可用的,因为它们相对容易通过实验获得。相比之下,非高斯状态的生成以及非高斯操作的实施则带来了重大挑战。这种分歧促使人们引入非高斯性的资源理论。对于任何资源理论,确定资源之间的自由转换协议(即非高斯状态之间的高斯转换协议)具有实际意义。通过系统的数值研究,我们通过任意确定性的一对一模式高斯映射解决了实验相关的单模非高斯状态之间的近似转换。首先,我们表明,对于有限能量,猫状态和二项式状态大致等效,而这种等效性以前仅在无限能量极限下才为人所知。然后,我们考虑从光子增加和光子减少的压缩态生成猫态,通过引入额外的压缩操作来改进已知方案。我们开发的数值工具还允许人们设计出三压缩态到立方相态的转换,超越之前报道的性能。最后,我们确定了其他各种不可行的转换。
尽管在早期检测和个性化治疗方面取得了重大进展,但癌症仍然是全球死亡的主要原因之一。目前备受关注的一种可能的抗癌方法是开发能够特异性和高效地递送抗癌药物的纳米载体。由于石墨烯基材料具有高药物负载能力和生物相容性,因此在这方面是很有前途的纳米载体。在这篇综述中,我们概述了石墨烯基材料与正常哺乳动物细胞在分子水平以及细胞和亚细胞水平上的相互作用,包括质膜、细胞骨架和膜结合细胞器,如溶酶体、线粒体、细胞核、内质网和过氧化物酶体。同时,我们汇集了有关石墨烯基材料与癌细胞相互作用的知识,这些知识被认为是这些材料在癌症治疗中的潜在应用,包括转移治疗、靶向药物递送和向非癌症干细胞的分化。我们重点介绍了一些关键参数的影响,例如石墨烯基材料的尺寸和表面化学,它们决定了这些粒子在体内和体外的内化效率和生物相容性。最后,本综述旨在将石墨烯基纳米材料(特别是氧化石墨烯)的关键参数(例如尺寸和表面改性)与它们与癌细胞和非癌细胞的相互作用关联起来,以便设计和改造它们用于生物应用,特别是用于治疗目的。2022 作者。由 Elsevier BV 出版 这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
C4. 什么是资源分配审查 (RAR)?LEA 如何知道是否需要完成?所有 LEA 的最佳做法是考虑如何在整个学区部署资源,以及这些资源是否会带来预期结果。根据联邦要求,学校的学生小组被确定为有针对性的支持和改进 (TSI) 和/或额外的有针对性的支持和改进 (ATSI),LEA 必须完成 RAR。在 RAR 期间,如果发现资源不公平,LEA 必须确保每所学校都有办法通过实施其计划来解决这些不公平问题。LEA 可以使用随附的资源分配审查工具来满足此要求。LEA 可以在 RIDE 成绩单页面上找到其 LEA 内被确定为 TSI 和/或 ATSI 的学校列表。请从学区成绩单下拉菜单中选择您的 LEA,然后单击责任选项卡,接下来单击学校摘要选项卡并滚动到底部。请注意,如果一个学生小组连续四年被认定为 ATSI,那么整个学校都可能被认定为 CSI。
在 2024 财年,Visit Bend 坚定地致力于长期可持续发展,成为一个繁荣的旅游目的地。随着客房税和入住率趋于稳定(甚至由于营销支出减少和天气等因素而下降),团队继续专注于平衡、可持续的目的地管理。Visit Bend 推出了一个新网站,提供现代化的用户界面和内容,重点介绍负责任的旅游工作和行业合作伙伴。本德可持续发展基金向当地项目拨款近 70 万美元,改善了当地人和居民的可达性和整体体验。本德文化旅游基金向文化活动和组织拨款 40 万美元。Visit Bend 成为 Leave No Trace 的第一个官方目的地合作伙伴,并被评为 Leave No Trace 的年度目的地合作伙伴。这些努力将在未来几年对我们的社区产生积极影响,这只是 Visit Bend 在 2024 财年取得成功的几个例子。
能源弹性是能源政策和研究的重要焦点,因为能源系统正面临越来越多的挑战,例如由于可再生能源生产增加而导致的电力短缺,以及极端天气导致的停电风险。通常,在这些情况下,能源弹性侧重于基础设施和确保电力供应不受干扰。本文提出了一个关于弹性的补充观点,以家庭为研究弹性的起点。基于对多个学科弹性的理解,我们提出了家庭能源弹性的定义,可用于探索家庭如何在电力供应不稳定的情况下确保未来生活良好。此外,我们借鉴了能源富裕环境下未来家庭能源使用的当前想法(备用能源、能源效率、灵活性和能源自给自足),以创建一个探索家庭能源弹性的框架。我们发现不同想法之间存在多样性的潜力,而这种多样性并不总是存在于主流的未来能源使用愿景中。从家庭能源弹性的角度来看,我们希望挑战电力需求不可协商的观念,并揭示支持家庭在不确定的未来变得更具弹性的机会。