黑色磷纳米片(BPNSS)由于其独特的物理化学特性而在石墨烯以外的2D材料中是新星。[38–47]在黑色磷(BP)晶体中,不同的BP层通过弱的范德华相互作用堆叠在一起,并且磷原子通过在层中通过SP 3杂交共价键相互联系,在每个phos-Phors-Phorus Atom上留下了一对单独的电子。[48] BPNSS沿扶手椅方向显示出重复的蜂窝结构,并沿着Zigzag方向进行双层布置,从而在BPNS中产生强大的面内各向异性电子和光学特性。[49–51] BPNSS显示了从0.3 eV(bulk bp)到2.0 eV(单层)的厚度依赖性直接带盖的广泛范围。它们的光学响应由激子主导,在几百meV范围内表现出结合能。[52,53]更重要的是,单层BP具有1000 cm 2 v-1 s-1的电荷载体迁移率,而在野外效应晶体管中,良好的ON/OFF ON/OFF比率为10 3-10 4。[54]由于这些令人兴奋的特性,BPNS在光催化,生物医学,能源存储和转换以及电子和光电设备中显示了潜在的应用。[55–61]但是,在环境条件下,BPNS的稳定性较差限制了其实际应用,这主要是因为在氧气和/或水存在下,磷原子化学降解为氧化磷。在不同的钝化策略中,通过共价或非共价方法(方案1)构建异质结构可以帮助获得具有各种架构和功能的基于BPN的异质结构。[62–66]到目前为止,已经证明了不同的方法,例如化学官能化[67-72]和金属氧化物或离子载体质层涂层[73-75],作为改善BPNS环境稳定性的有效方法。基于BPN的异质结构可以提供BPNS的大面积钝化,结合属性
摘要 真实的核反应截面模型是可靠的重离子传输程序的重要组成部分。此类程序用于载人航天探索任务的风险评估以及离子束治疗剂量计算和治疗计划。因此,在本研究中,GSI-ESA-NASA 合作生成了总核反应截面数据集合。该数据库包括实验测量的总核-核反应截面。Tripathi、Kox、Shen、Kox-Shen 和 Hybrid-Kurotama 模型与收集的数据进行了系统比较。给出了有关模型实施的详细信息。指出了文献中的空白,并考虑了哪些模型最适合与太空辐射防护和重离子治疗最相关的系统的现有数据。
摘要 我们研究了光场与一维 (1D) 半无限波导末端附近的原子耦合的三种放大过程。我们考虑了两种设置,其中驱动在三能级原子的裸基或修饰基中引起粒子数反转,以及一种设置,其中放大是由于驱动的两能级原子中的高阶过程引起的。在所有情况下,波导的末端都充当光的镜子。我们发现,与开放波导中的相同设置相比,这以两种方式增强了放大。首先,镜子迫使原子的所有输出都朝一个方向传播,而不是分成两个输出通道。其次,镜子引起的干涉使得能够调整原子中不同跃迁的弛豫速率比,以增加粒子数反转。我们量化了由于这些因素而导致的放大增强,并表明可以在超导量子电路实验中用标准参数证明这一点。
受气候缓解目标国家的驱动国家,全球大流行后的经济增长和恢复的低成本可再生能源的优先级。很明显,可疑的技术选择会导致更广泛的社会经济利益,这是在将其能源部门朝着更高份额的可再生能源份额过渡到更高份额的国家中所表明的。对更好地理解能源过渡对就业的直接影响的兴趣越来越大,对传统能源部门失去的工作的担忧将对世界各地的决策介绍至关重要。这项研究重点是加速可再生能源的净就业影响,该净摄入量将于2050年到2050年从可再生能源中获得100%的能源,与巴黎协议的雄心勃勃的目标兼容。与电力,热量,运输和脱盐部门相关的直接能源工作从2020年的约5700万增加到到2050年的近1.34亿。可再生能源和可持续技术中的价值链比采摘化石燃料更重要。结果表明,全球能源过渡将对世界各地经济的未来稳定和增长产生积极影响。©2021作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
外尔半金属 MoTe 2 为研究外尔物理与超导之间的相互作用提供了难得的机会。最近的研究发现,Se 取代可以将超导性提高到 1.5 K,但会抑制对于外尔态的出现至关重要的 T d 结构相。迄今为止,尚未建立对增强超导和 T d 相可能共存的微观理解。在这里,我们使用扫描隧道显微镜研究了最佳掺杂的超导体 MoTe 1.85 Se 0.15,其体相 T c ∼ 1.5 K。通过准粒子干涉成像,我们发现了具有破缺反演对称性的低温 T d 相的存在,其中超导性全局共存。此外,我们发现从上临界场和涡旋附近的态密度衰减中提取的超导相干长度远大于现有化学无序的特征长度尺度。我们发现 MoTe 1.85 Se 0.15 中的 Weyl 半金属正常相具有稳健的超导性,这使它成为实现拓扑超导的有希望的候选材料。
私人家庭投资(PVS)和电池的投资的利益取决于电力的市场价格,这反过来又受PVS和PVS和电池的使用的影响。这在集中发电系统与对PVS和电池的家庭投资之间创造了反馈机制。为了调查这种反馈效果,我们将用于家庭投资的本地优化模型与欧洲发电销售模型联系起来。本地优化基于对214个瑞典家庭测量的消费量。模型比较了2032年的集中电力供应系统的三种不同方案,以及几种敏感性情况。我们的结果表明,在调查案件中,瑞典家庭中瑞典家庭中电池存储容量的5 E 20 gW P的总投资水平为5 E。这些级别比算上市场反馈之前的水平低33%。光伏投资的利益受到的影响受到电力价格以及有关电网关税和税收的假设的最大影响。电池投资的价值取决于PV电力和市场套利的自我消费增加的好处。©2020作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
超级电容器和可充电电池都是储能设备,其中一种的性能优势传统上是另一种的弱点。电池受益于卓越的储能容量,而超级电容器具有更高的功率和更长的循环寿命。这些设备在电动汽车和电网储能应用中的快速应用正在推动它们的进一步发展和生产。积累和理解这两种设备技术的现有知识将为这两个有着共同目标的不同领域未来研究和开发的进展奠定基础。因此,在这篇评论中,我们汇总了过去 18 年超级电容器和电池的能量功率性能趋势,以预测未来十年这些技术的发展方向。我们特别讨论了每种技术在储能领域的影响及其对混合研究的影响。趋势预测表明,到 2040 年,性能最佳的非对称和混合超级电容器在能量密度 (ED) 方面可以与目前正在开发的商业电池技术相媲美。在功率密度 (PD) 方面,电池技术可以实现与某些基于双电层 (EDL) 的超级电容器相当的性能。对于某些应用,我们预见到这两种设备将继续混合以填补能量功率缺口,从而使增强 ED 对 PD 的惩罚变得微不足道。这种预期的改进最终可能会达到饱和点,这表明一旦达到一定水平的 ED,任何进一步的指标增强只会导致与 PD 的严重权衡,反之亦然。在这些技术中观察到的饱和也促使人们探索新的途径,特别强调可持续性,以使用可再生材料和方法实现高性能。
研究了工艺气体、激光扫描速度和样品厚度对激光粉末床熔合制备的 Ti-6Al-4V 中残余应力和孔隙率形成的影响。使用纯氩气和氦气以及它们的混合物(30% 氦气)来建立残余氧含量低至 100 ppm O 2 的工艺气氛。结果表明,通过 X 射线衍射测得的薄样品(220 MPa)的亚表面残余应力明显低于长方体样品(645 MPa)。这种差异归因于较短的激光矢量长度,导致热量积聚,从而实现原位应力释放。即使增加了扫描速度,在工艺气体中添加氦气也不会在简单的几何形状中引入额外的亚表面残余应力。最后,在氦气下构建的悬臂(从底板移除后)的偏转比在氩气和氩气-氦气混合物下制备的悬臂的偏转更大。该结果表明,由于氦气的高热导率、热容量和热扩散率,在氦气下制造涉及大面积扫描的复杂设计可能受到更高的残余应力。
基于小分子受体(SMA)的全PSC。 [1–8] 近年来,随着新型高效PD和聚合小分子受体(PSMA)的快速发展,全PSC的能量转换效率(PCE)已升至16%。 [9–14] 然而,目前报道的PCE超过13%的全PSC仅有少数,仍然远低于最先进的基于SMA的全PSC。更重要的是,它们的机械性能还远远达不到可穿戴设备的要求(即要求裂纹起始应变(COS)至少为20–30%)。阻碍基于PSMA的全PSC性能的主要障碍是强烈相分离的共混物形貌,这是由于高分子量PD和PSMA的分离导致的,从而导致电荷产生和传输无法优化。 [15,16] 这些非最优形态通常包括共混膜中的许多缺陷位点(即尖锐的畴-畴界面和大的聚合物聚集体),限制了低 COS 下的机械强度和拉伸性。[17–19] 此外,聚合物共混物的相分离受 PD 和 PA 的聚集和结晶行为的影响。特别是,含有高度结晶、刚性 SMA 单元的 PSMA 通常具有非常强的结晶和聚集特性,导致强烈的相分离
摘要 本教程将讨论数据中心/服务器以及 AI 和机器学习系统中使用的 48V 至 0.7V (2,000A) 电源转换器所面临的挑战和解决方案。将讨论和比较两种电源架构。第一种架构是两级架构,其中 48V 转换为 12V(或另一个中间电平),然后将 12V 转换为 0.7V。第二种架构是“单级”,其中 48V“直接”转换为 0.7V。使用“直接”转换架构,无法访问(可见)中间电压总线。在简要介绍广泛应用于数据中心、服务器等的 OAM(OCP 加速器模块)的背景信息和功率要求之后,本教程将提供对降低功率损耗和提高功率密度的技术的新认识。本教程将首先回顾两级架构的最新技术并评估其优点和局限性。然后,本教程将回顾“单级”架构的最新技术并评估其优缺点。基于上述分析和回顾,本教程将提出并讨论 48V 至 0.7V(低至 0.3V)、2,000A(或更高)的应用研究方向,以实现极高的效率、极小的尺寸和电流共享、可扩展、快速动态响应等。