概要:生命活动,例如呼吸,是通过细胞、组织和器官的持续形状调节来完成的。开发具有形状变形能力的智能材料是迈向类生命系统和可穿戴电子设备、软体机器人和仿生执行器等新兴技术的关键一步。从细胞中汲取灵感,人们组装了智能囊泡系统来模拟生物形状的调节。这将有助于理解细胞形状的适应性,并指导具有形状变形能力的智能材料的设计。由两亲性分子组装的聚合物囊泡就是一个卓越的囊泡系统的例子。其化学多功能性、物理稳定性和表面功能性使其有望应用于纳米医学、纳米反应器和仿生系统。然而,由于聚合物链的低流动性和囊泡膜的低渗透性导致能量分布不均匀,因此很难驱动聚合物囊泡脱离平衡态来诱导形状转变。过去几十年来,大量的研究开发了各种驱动形状转变的方法,包括透析、化学添加、温度变化、聚合、气体交换等。如今,聚合物囊泡可以被设计成各种非球形形状。尽管取得了令人瞩目的进展,但目前关于聚合物囊泡形状转变的研究大多仍处于反复试验阶段。预测和编程控制聚合物囊泡的形状转变是一项巨大的挑战。深入了解聚合物囊泡的变形路径将有助于从反复试验阶段过渡到计算阶段。本文介绍了聚合物囊泡形状转变的最新进展。为了进行深入分析,我们将聚合物囊泡的形状转变分为基本变形和耦合变形。首先,我们讨论聚合物囊泡的基本变形,重点关注两种变形路径:扁圆形路径和扁长圆形路径。并介绍了触发不同变形路径的策略。其次,我们探讨了两种变形途径选择性的起源以及控制这种选择性的策略。第三,我们探讨了聚合物囊泡的耦合变形,重点关注两种基本变形途径的切换和耦合。最后,我们分析了聚合物囊泡形状转变的挑战与机遇。我们设想,对变形途径的系统理解将推动聚合物囊泡形状转变从反复试验阶段进入计算阶段。这将使我们能够预测纳米颗粒在血液和间质组织等复杂环境中的变形行为,并最终获得人造应用所需的先进结构。
简单总结:黑色素瘤仅占人类皮肤癌的 1%,但在一些情况下会导致患者死亡。如今,有不同的全身疗法用于治疗人类黑色素瘤。虽然这些疗法大大延长了患者的寿命,但它们仍然与耐药性有关。细胞外囊泡 (EV) 是参与细胞间通讯的肿瘤细胞释放的微小囊泡,在黑色素瘤的发病机制和进展中起着重要作用。它们在几种癌症的几种抗癌药物耐药机制中起着至关重要的作用,有强烈的迹象表明,黑色素瘤细胞释放的 EV 可能在耐药性的产生中发挥作用,调节对抗癌药物的反应。了解它们的作用将有助于改善黑色素瘤治疗的结果。
癌细胞衍生的细胞外囊泡(CEV)是一种新型的癌症治疗中治疗剂,可以通过各种癌细胞的自分泌分泌,直接提取癌细胞的直接提取以及癌细胞来源的膜与先进材料的结合来制备。用各种生物活性分子,外泌体由细胞进行细胞间通信产生。尽管已知癌细胞衍生的外泌体抑制肿瘤凋亡并促进癌症的进展,但研究人员已经开发了各种创新的策略来制备癌细胞中的抗肿瘤囊泡。采用当前的抗肿瘤囊泡策略,将四种不同种类的CEV分类,包括辐照的CEV,高级材料合并的CEV,化学治疗药物加载的CEV和基因工程CEV。以这种方式,CEV不仅可以成为抗肿瘤药物的携带者,还可以成为靶肿瘤区域的抗肿瘤药物,而且还可以充当免疫活性剂。在主要涉及准备,效率和应用的策略中提出的问题。在这篇综述中,我们对利用CEV的抗肿瘤潜力的当前策略进行了分类和总结。此外,已经讨论了这种新手的挑战和前景。
抽象的内皮细胞衍生的细胞外囊泡是由活化和凋亡的内皮细胞产生的,并在各种生理状况(例如炎症,修复,程序性细胞死亡和免疫反应)中起关键作用。有大量证据表明,几种类型的内皮细胞衍生的细胞外囊泡的合成和分泌失调,然后可以触发微血管炎症,动脉粥样硬化斑块形成,斑块破裂,血栓形成,血栓形成和内皮功能障碍。动脉粥样硬化和心血管事件的发展与凋亡,内皮细胞衍生的囊泡的数量增加以及激活的内皮细胞衍生的囊泡的减少有关。本综述描述了内皮细胞衍生的细胞外囊泡在动脉粥样硬化的表现和进展中的作用。我们还讨论了改变源自内皮细胞的细胞外囊泡的免疫表型的临床用途和好处,以充当无症状和亚临床动脉粥样硬化的预测生物标志物。
关于电动汽车的出版物。在EV计量学以及理解和应用EV生物学方面已取得了重要的进步。然而,由于EV命名法的挑战,与非详细细胞外颗粒的分离,表征和功能研究,由于基本生物学到临床应用的范围,障碍仍在实现从基本生物学到临床应用的潜力。为了解决这个迅速发展的领域中的挑战和机会,国际细胞外囊泡学会(ISEV)更新了其“最小的细胞外囊泡研究信息”,该学会于2014年首次发布,然后于2018年出版为Misev2014和Misev2018和Misev2018,并进行了评估。当前文档MISEV2023的目标是为研究人员提供可用方法的更新快照及其对电动汽车从多个来源的生产,分离和表征的优势和局限性,包括细胞培养,身体流体和实心组织。除了在电动汽车研究的基本原理中介绍最新的艺术状态外,该文档还涵盖了目前正在扩大该领域边界的先进技术和方法。MISEV2023还包括有关EV释放和摄取的新部分,以及对研究电动汽车的体内方法的简短讨论。汇编来自ISEV专家工作队和1000多个研究人员的反馈,该文档传达了电动汽车研究的现状,以促进稳健的科学发现并更快地推动该领域的前进。
关于电动汽车的出版物。在EV计量学以及理解和应用EV生物学方面已取得了重要的进步。然而,由于EV命名法的挑战,与非详细细胞外颗粒的分离,表征和功能研究,由于基本生物学到临床应用的范围,障碍仍在实现从基本生物学到临床应用的潜力。为了解决这个迅速发展的领域中的挑战和机会,国际细胞外囊泡学会(ISEV)更新了其“最小的细胞外囊泡研究信息”,该学会于2014年首次发布,然后于2018年出版为Misev2014和Misev2018和Misev2018,并进行了评估。当前文档MISEV2023的目标是为研究人员提供可用方法的更新快照及其对电动汽车从多个来源的生产,分离和表征的优势和局限性,包括细胞培养,身体流体和实心组织。除了在电动汽车研究的基本原理中介绍最新的艺术状态外,该文档还涵盖了目前正在扩大该领域边界的先进技术和方法。MISEV2023还包括有关EV释放和摄取的新部分,以及对研究电动汽车的体内方法的简短讨论。汇编来自ISEV专家工作队和1000多个研究人员的反馈,该文档传达了电动汽车研究的现状,以促进稳健的科学发现并更快地推动该领域的前进。
威尔士,约书亚A。; Goberdhan,Deborah C. I。;奥迪斯科尔,洛林; Buzas,编辑I;蓝色,cherie; Bussolati,本尼迪克特; Cai,Houjian; Vizio,Dolors;德里斯,汤姆·A P; UTAErdbrügger;胡安·弗尔康·佩雷斯(Falcon-Perez); fu,清林;希尔,安德鲁·F; Lenessi,Metka;林,赛琴; Mahoney,MỹG; Mohanty,Sujata;莫勒,安德里亚斯; Nieuwland,Rienk;高海的Ochiya; Sahoo,Susmith;酷儿,安娜c; Zheng,Lei; Zijlstra,Andries;亚马逊,莎拉;巴巴巴斯,雷姆;贝尔格,保罗;桥梁,以斯帖M;布鲁卡莱,马可;汉堡,迪伦; Carney,Randy P;然而,伊曼纽尔;生长,罗塞拉;一半,埃德韦纳;哈里斯,阿德里安·L;哈格(Haghey),诺曼(Norman J); Hendrix,AN;伊万诺夫(Alexander R);蒂亚纳(Jovanovia-Thaliman),蒂贾纳(Tijanah);十字架加西亚,妮可A;此外,vroniqa;迭戈之家; Lässer,Cecil; Lennon,Kathleen M; Lötvall,Jan; Maddox,Adam L;埃琳娜(Martent-in-Lain),埃琳娜(Elena); Missencos,Rachel R;纽曼,劳伦A; Ridolfi,Andrea;夏娃·罗德(Rohde);罗哈林(Rojalin),塔图(Tatu);罗兰,安德鲁; Saftics,Andras; Sandau,Usula s; Sagstad,Julie A; Shekari,Faezeh; Swit,西蒙; Ter-Ovansyan,Dmitry; TOSSAR,JUAN P;家具,游泳;弗朗切斯科山谷; Varga,Zoltan;去保罗,埃德温; Van Herwijnen,Martijn J C; Wauben,Mark H M;韦曼,安·M;威廉姆斯,莎拉; Zinderi,安德里亚; Zimmerman,Alan J;财团任务; Handberg,Aaase;地面,MaleneMøller;梅尔加德(Mailergaard)他们,克洛蒂尔德; Witwer,发表于:提取目标的肩膀威尔士,约书亚A。; Goberdhan,Deborah C. I。;奥迪斯科尔,洛林; Buzas,编辑I;蓝色,cherie; Bussolati,本尼迪克特; Cai,Houjian; Vizio,Dolors;德里斯,汤姆·A P; UTAErdbrügger;胡安·弗尔康·佩雷斯(Falcon-Perez); fu,清林;希尔,安德鲁·F; Lenessi,Metka;林,赛琴; Mahoney,MỹG; Mohanty,Sujata;莫勒,安德里亚斯; Nieuwland,Rienk;高海的Ochiya; Sahoo,Susmith;酷儿,安娜c; Zheng,Lei; Zijlstra,Andries;亚马逊,莎拉;巴巴巴斯,雷姆;贝尔格,保罗;桥梁,以斯帖M;布鲁卡莱,马可;汉堡,迪伦; Carney,Randy P;然而,伊曼纽尔;生长,罗塞拉;一半,埃德韦纳;哈里斯,阿德里安·L;哈格(Haghey),诺曼(Norman J); Hendrix,AN;伊万诺夫(Alexander R);蒂亚纳(Jovanovia-Thaliman),蒂贾纳(Tijanah);十字架加西亚,妮可A;此外,vroniqa;迭戈之家; Lässer,Cecil; Lennon,Kathleen M; Lötvall,Jan; Maddox,Adam L;埃琳娜(Martent-in-Lain),埃琳娜(Elena); Missencos,Rachel R;纽曼,劳伦A; Ridolfi,Andrea;夏娃·罗德(Rohde);罗哈林(Rojalin),塔图(Tatu);罗兰,安德鲁; Saftics,Andras; Sandau,Usula s; Sagstad,Julie A; Shekari,Faezeh; Swit,西蒙; Ter-Ovansyan,Dmitry; TOSSAR,JUAN P;家具,游泳;弗朗切斯科山谷; Varga,Zoltan;去保罗,埃德温; Van Herwijnen,Martijn J C; Wauben,Mark H M;韦曼,安·M;威廉姆斯,莎拉; Zinderi,安德里亚; Zimmerman,Alan J;财团任务; Handberg,Aaase;地面,MaleneMøller;梅尔加德(Mailergaard)他们,克洛蒂尔德; Witwer,发表于:提取目标的肩膀
区室化是生命的标志,也是当前构建人工细胞的核心目标。[1] 人们研究了不同类型的区室,包括脂质体、蛋白质体、聚合物体和凝聚层,以深入了解区室化对活细胞中常见的生物分子和生化反应网络的作用。[2] 然而,这些区室无法模拟活细胞的所有功能特征,包括高内部生物分子浓度、选择性膜和与其他细胞相互作用的能力。凝聚层液滴是一种类似细胞的区室,由RNA、肽或小分子在多种非共价相互作用的驱动下通过液-液相分离(LLPS)自发形成。[3] 凝聚层的物理性质取决于其组成部分的结构-功能关系。一般来说,它们含有高浓度的肽或RNA,模拟活细胞内的物理化学环境。[4] 然而,由于缺乏膜,通常会导致快速聚结,这对它们的稳定性构成了挑战。此外,没有屏障意味着难以选择性地吸收营养物质并去除废物同时保留有用的产品。[3,5] 脂质基膜结合区室(其中脂质体是最著名的例子)也常被用作原始细胞模型进行研究,但它们内部的溶质浓度通常低于活细胞中的生物分子浓度,或者当高渗透压没有得到仔细平衡时,它们有破裂的危险。[6]
简单总结:慢性淋巴细胞白血病 (CLL) 的特征是异常 B 淋巴细胞在免疫系统的外周成分中积聚。尽管开发了新的 CLL 疗法,但仍会出现耐药性和疾病复发。在骨髓和次级淋巴组织中,白血病 B 细胞的运输、存活和增殖受与微环境的相互作用(通过细胞-细胞外基质相互作用、细胞-细胞接触和可溶性因子交换)的调节,并导致治疗耐药性。在这里,我们回顾了释放到这种微环境中的细胞外囊泡的生物学,以及肿瘤性 B 细胞与邻近或远程靶细胞之间的串扰。更好地了解细胞外囊泡在 CLL 进展和耐药性中的作用可能会为开发针对肿瘤细胞和肿瘤微环境之间的促存活对话的新型疗法提供机会。