摘要:胶质瘤脑肿瘤具有与其他肿瘤相似的纹理模式,因此检测和分割胶质瘤脑肿瘤是一项具有挑战性的过程。本研究提出了一种改进的肿瘤检测系统 (MTDS) 方法来从健康脑图像中识别和分类胶质瘤脑图像。空间 Gabor 变换 (SGT)、特征计算和深度学习结构构成了建议的 MTDS 技术的训练工作流程。从胶质瘤脑图像数据集图像和正常脑图像数据集图像计算特征,并将这些特征输入到分类架构中。在本文中,提出的 IVGG 架构源自现有的视觉几何组 (VGG) 架构,以提高所提系统的检测率并降低计算时间复杂度。所提系统的测试工作流程还包括 SGT、特征计算和 IVGG 架构,以产生将源脑图像分类为正常或胶质瘤的结果。此外,形态分割技术已用于查找此胶质瘤图像中的肿瘤位置。本研究使用了两个独立的脑成像数据集来评估和验证建议的 MTDS 的性能效率。数据集是 BRATS Imaging 2020 (BI20) 和 Kaggle Brain Imaging (KBI)。已经根据 Jaccard 指数、召回率、准确率和检测率对性能效率进行了分析。
摘要 — 阿尔茨海默病 (AD) 是一种广泛存在的神经退行性疾病,由大脑结构变化引起,导致认知功能恶化。患者通常在不可逆的神经损伤发生后,在后期出现诊断症状。因此,早期发现 AD 对于开始治疗以减缓疾病进展和最大限度地提高患者的生活质量至关重要。随着机器学习和扫描技术的快速发展,使用神经成像数据的计算机辅助系统可能能够早期检测 AD。其中,利用磁共振成像 (MRI) 的深度学习已成为一种突出的工具,因为它能够通过局部连接、权重共享和空间不变性提取高级特征。本文通过构建 3D VGG 变体卷积网络 (CNN),描述了我们基于两个公开可用的数据集 ADNI 和 OASIS 对分类准确性的研究。我们使用 3D 模型来避免信息丢失,信息丢失发生在将 3D MRI 切片成 2D 图像并通过 2D 卷积滤波器对其进行分析的过程中。我们还对数据进行了预处理,以提高模型的有效性和分类性能。所提出的模型在 ADNI 上实现了 73.4% 的分类准确率,在 OASIS 数据集上实现了 69.9% 的分类准确率(5 倍交叉验证 (CV)),优于 2D 网络模型。索引术语 — 阿尔茨海默病、深度学习、图像分类、3D CNN、MRI、神经影像学
摘要:太空任务中的严格时间限制带来了许多自主任务的快速视频处理问题。视频处理涉及分离不同的图像帧、获取图像描述符、应用不同的机器学习算法进行物体检测、避障以及航天器自动操纵中涉及的许多其他任务。这些任务需要在时间限制内对图像进行最翔实的描述。在流量估计应用中,需要从连续图像帧中跟踪这些信息点。SIFT 和 SURF 等经典算法是特征描述开发的里程碑。但计算复杂性和高时间要求迫使关键任务避免在实时处理中采用这些技术。因此,本文选择时间保守且复杂度较低的预训练卷积神经网络 (CNN) 模型作为特征描述符。使用预训练的 VGG 模型参数设计和实现 7 层 CNN 模型,然后使用这些 CNN 特征匹配月球下降视频连续图像帧中的兴趣点。系统的性能是基于视觉和经验关键点匹配来评估的。然后使用 CNN 特征将视频中两个连续图像之间的匹配分数与 SIFT 和 SURF 等最先进的算法进行比较。结果表明,对于太空任务的关键点跟踪应用,在时间关键的视频处理任务中,CNN 特征更可靠、更稳健。关键词:人工智能;卷积神经网络;特征描述符;机器学习;太空任务 1 引言
摘要:脑肿瘤是细胞发育不正常的结果。它是全球成年人死亡的主要原因。早期发现脑肿瘤可以避免许多死亡。用于早期脑肿瘤诊断的磁共振成像(MRI)可以提高患者的生存机会。诊断脑肿瘤的最常用方法是 MRI。MRI 中恶性肿瘤的可见性提高使治疗更容易。脑癌的诊断和治疗取决于其识别和治疗。过去十年中提出了许多深度学习模型,包括 Alexnet、VGG、Inception、ResNet、DenseNet 等。所有这些模型都是在庞大的数据集 ImageNet 上训练的。这些通用模型具有许多参数,在针对特定问题实施这些模型时,这些参数变得无关紧要。本研究使用自定义深度学习模型对脑部 MRI 进行分类。提出的疾病和空间注意力模型(DaSAM)有两个模块; (a) 疾病注意模块 (DAM),用于区分图像的疾病区域和非疾病区域;(b) 空间注意模块 (SAM),用于提取重要特征。所提出的模型的实验在两个公开的多类数据集 Figshare 和 Kaggle 数据集上进行,分别达到了 99% 和 96% 的准确率。所提出的模型还使用跨数据集验证进行了测试,在 Figshare 数据集上训练并在 Kaggle 数据集上验证时达到了 85% 的准确率。DAM 和 SAM 模块的结合实现了特征映射功能,这对于在模型的决策过程中突出显示重要特征非常有用。
考虑到这些知识,VGG已经定义了必要的疫苗(核心),例如所有狗和猫都应该收到的疫苗,考虑到他们居住或旅行的地方的生活方式和地理区域。一些必需的疫苗可以保护动物免受国际分配的潜在致命疾病的侵害,而另一些则可以防止仅在国家或私人地区普遍存在的潜在致命疾病。世界所有地区的必需狗疫苗包括提供犬类犬类病毒(CDV),1型犬腺病毒(CAV)和2型犬类小爪病毒(CPV)的保护犬。世界所有地区的必需CAT疫苗是对猫科动物(FPV),猫科动病毒(FCV)和1型(FHV)猫疱疹病毒的保护。在愤怒是地方性的地区,针对愤怒的疫苗接种对狗和猫都必须被认为是必不可少的(即,狂犬病疫苗在这些地方至关重要),即使没有法律要求这样做。犬钩端螺旋体病是另一种潜在的致命性人畜共患病,全球范围内分布广泛。在犬类钩端螺旋体病是地方性的国家或地区,其中含义的血清群是已知的,并且有适当的疫苗可用,强烈建议对所有狗进行疫苗接种,以防止钩端螺旋病,并且应将疫苗视为在这些地区必不可少的。在许多地方,与猫白血病病毒(FELV)有关的疾病是地方性的。在这些地方,FELV疫苗应被认为是年轻猫(<1岁)和访问国外或与有出国访问的猫住的成年猫所必需的。
1位城市工程学院CSE助理教授2,3,4,5印度班加罗尔城市工程学院的计算机科学与工程学学生。 摘要:人工智能技术的出现刺激了各个领域的创新,废物管理也不例外。 该项目提出了一个基于AI的垃圾检测系统,旨在彻底改变各种环境中废料的识别和分类。 利用先进的计算机视觉和机器学习算法,该系统自动化垃圾检测和分类过程,从而有助于更高效,更可持续的废物管理实践。 计算机愿景的最新进展已为解决围绕废物管理的全球问题开辟了新的途径。 这项研究深入研究了计算机视觉技术,以进行精确的废物分类和识别。 主要目标是开发一种能够准确识别和分类各种废物容器的强大算法。 使用深度学习算法(例如卷积神经网络(CNN),内容提取和分类)。 数据集包含图像,描绘了各种废物类型,包括塑料,纸张,玻璃,金属和有机废物。拟议的系统涉及预处理,特征提取,分类和后处理阶段。 图像增强,归一化和降噪功能在预处理过程中增强了输入图像质量。 使用预训练的CNN模型(例如Resnet,VGG或Mobilenet)提取相关特征。1位城市工程学院CSE助理教授2,3,4,5印度班加罗尔城市工程学院的计算机科学与工程学学生。摘要:人工智能技术的出现刺激了各个领域的创新,废物管理也不例外。该项目提出了一个基于AI的垃圾检测系统,旨在彻底改变各种环境中废料的识别和分类。利用先进的计算机视觉和机器学习算法,该系统自动化垃圾检测和分类过程,从而有助于更高效,更可持续的废物管理实践。计算机愿景的最新进展已为解决围绕废物管理的全球问题开辟了新的途径。这项研究深入研究了计算机视觉技术,以进行精确的废物分类和识别。主要目标是开发一种能够准确识别和分类各种废物容器的强大算法。使用深度学习算法(例如卷积神经网络(CNN),内容提取和分类)。数据集包含图像,描绘了各种废物类型,包括塑料,纸张,玻璃,金属和有机废物。拟议的系统涉及预处理,特征提取,分类和后处理阶段。图像增强,归一化和降噪功能在预处理过程中增强了输入图像质量。使用预训练的CNN模型(例如Resnet,VGG或Mobilenet)提取相关特征。转移学习技术为垃圾分类任务优化了这些模型。分类涉及使用使用优化算法(如随机梯度下降(SGD)和ADAM)进行标记的数据训练改良的CNN模型。诸如非最大抑制(NMS)之类的后处理技术解决了生产预测并消除重复的信号。实验结果证明了该算法在准确分类和识别废物类型方面的有效性,从而对废物管理工作产生了重大贡献。未来的研究指示包括实时实施,可伸缩性以及与机器人系统的集成,用于工业和城市环境中的自主废物管理。关键字:计算机视觉,CNN模型,Python,Yolo模型,优化铝制。
在获取磁共振(MR)图像中,较短的扫描时间会导致更高的图像噪声。因此,使用深度学习方法自动图像降解是高度兴趣的。在这项工作中,我们集中于包含线状结构(例如根或容器)的MR图像的图像。特别是,我们研究了这些数据集的特殊特征(连接性,稀疏性)是否受益于使用特殊损失功能进行网络培训。我们特此通过比较损失函数中未经训练的网络的特征图将感知损失转换为3D数据。我们测试了3D图像降级的未经训练感知损失(UPL)的表现,使MR图像散布脑血管(MR血管造影-MRA)和土壤中植物根的图像。在这项研究中,包括536个MR在土壤中的植物根和450个MRA图像的图像。植物根数据集分为380、80和76个图像,用于培训,验证和测试。MRA数据集分为300、50和100张图像,用于培训,验证和测试。我们研究了各种UPL特征的影响,例如重量初始化,网络深度,内核大小以及汇总结果对结果的影响。,我们使用评估METIC,例如结构相似性指数(SSIM),测试了四个里奇亚噪声水平(1%,5%,10%和20%)上UPL损失的性能。我们的结果与不同网络体系结构的常用L1损失进行了比较。我们观察到,我们的UPL优于常规损失函数,例如L1损失或基于结构相似性指数(SSIM)的损失。对于MRA图像,UPL导致SSIM值为0.93,而L1和SSIM损耗分别导致SSIM值分别为0.81和0.88。UPL网络的初始化并不重要(例如对于MR根图像,SSIM差异为0.01,在初始化过程中发生,而网络深度和合并操作会影响DeNo的性能稍大(5卷积层的SSIM为0.83,而核尺寸为0.86,而5卷积层的0.86 vs. 0.86对于根数据集对5卷积层和5卷积层和内核尺寸5)。我们还发现,与使用诸如VGG这样的大型网络(例如SSIM值为0.93和0.90)。总而言之,我们证明了两个数据集,所有噪声水平和三个网络体系结构的损失表现出色。结论,对于图像
多媒体数据,例如图像,文本,文件或带有数据加密的视频。图像模拟是一种将图像隐藏在另一个图像中的技术。在图像密封造影中,封面图像被操纵,以使隐藏的数据看不见,这不会使其可疑,例如在加密中。相反,使用切解来检测任何秘密。图像中的消息并提取隐藏的信息[1]。在提出了一种略有不同的方法中,考虑了样式图像以及内部信息和掩护图像。生成的支撑图像被转换为给出的样式图像作为输入。揭示网络用于解码从Stego图像创建的秘密信息。与其他方法一样,使用基于VGG的自动编码器架构进行了任意调整秘密数据的大小,样式图像是通过自适应示例[2]完成的。该通道是因为CR和CB通道中的所有语义和颜色信息。此外,为了将有效载荷减少三分之二,隐藏的图像将转换为灰度图像格式。y通道Haltone Secret Image被馈送到编码器 - 模块网络以生成支撑图像。源图像是Y通道与CR和CB通道结合使用,以在YCRCB颜色空间中创建封面图像括号图像。为了编码隐藏的图像,Y通道DE Brace图像被馈回启示网络,以输出灰度刻度隐藏的图像。另外,将两种不同的变体用于生殖模型 - 基本和残留模型[3]。提出了k-lsb方法,其中k最小位被秘密消息替换。使用加密和隐肌的结合,其中封面图像的LSB被秘密图像的最重要位取代。使用伪随机数生成器来选择像素,并且每次旋转时都会对键进行加密。Stega分析使用熵过滤器检测并揭示秘密图像[4]。LSB方法也用于在视频中隐藏秘密信息笑话。视频是称为视频帧的图像序列。每个视频都被切成框架,秘密信息的二进制位隐藏在视频帧的LSB中。LSB替代方法和视频的基本形式结合了Huffman编码和LSB替代方法。另一种有趣的方法是将音频与录像带一起使用以改善隐藏性[5]。
近来,需要高平均功率激光束的应用数量急剧增加,涉及大型项目,如空间清洁 [1]、航天器推进 [2]、粒子加速 [3],以及工业过程 [4] 或防御系统 [5]。激光光束组合是达到极高功率水平的最常用方法之一,特别是相干光束组合 (CBC) 技术 [6]。它们旨在对放大器网络传输的平铺激光束阵列的发射进行相位锁定,以产生高亮度的合成光束。由于实际激光系统(尤其是光纤激光系统)中阵列中光束之间的相位关系会随时间演变,因此这些技术必须通过伺服环路实时校正合成平面波的相位偏差。近年来,CBC 技术得到了广泛发展,探索了调整合成离散波前中各个相位的不同方法。它们可以分为两大类。在第一类中,测量阵列中光束的相位关系,然后进行校正 [7]。在第二种方法中,实际波前和期望波前之间的差异通过迭代过程得到补偿 [8]。在后一种情况下,优化算法驱动反馈回路,分析所有光束之间干涉的阵列相位状态的更多全局数据 [9,10]。这些技术通常更易于实施,所需电子设备更少,但需要更复杂的数值处理,其中一些技术在处理大量光束时速度会降低。最后一个问题与反馈回路中达到预期相位图所需的迭代次数有关,该迭代次数会随着要控制的相位数的增加而迅速增加。最近,人们研究了神经网络 (NN) 和机器学习,以期找到一种可能更简单、更有效的方法来实现相干光束组合。已发表的文献 [11] 中涉及的一种方案依赖于卷积神经网络 (VGG) 的直接相位恢复,然后一步完成相位校正,例如在自适应光学 NN 的开创性工作 [12]。 NN 用于将光束阵列干涉图样的强度(在透镜焦点处形成的远场或焦点外的图像、分束器后面的功率等)直接映射到阵列中的相位分布中。恢复初始相位图后,可以直接应用相位调制将相位设置为所需值。[11] 中报告的模拟表明,当阵列从 7 条光束增加到 19 条光束时,基于 CNN 的相位控制的精度会下降。这一限制在波前传感领域也得到了强调,因此 NN 通常仅用作初始化优化程序的初步步骤 [13]。另一种可能的方案是强化