尽管隐式神经表征 (INR) 近期取得了进展,但对于基于坐标的 INR 多层感知器 (MLP) 来说,学习跨数据实例的通用表征并将其推广至未见实例仍然具有挑战性。在这项工作中,我们为可推广的 INR 引入了一个简单而有效的框架,该框架使基于坐标的 MLP 能够通过仅调节早期 MLP 层中的一小组权重作为实例模式组合器来表示复杂数据实例;其余 MLP 权重学习跨实例通用表示的模式组合规则。我们的可推广 INR 框架与现有的元学习和超网络完全兼容,可用于学习预测未见实例的调节权重。大量实验表明,我们的方法在音频、图像和 3D 对象等广泛领域都实现了高性能,而消融研究验证了我们的权重调节。
缺失模态问题对于多模态模型来说至关重要,但并非易事。当前旨在处理多模态任务中缺失模态问题的方法要么仅在评估期间处理缺失模态,要么训练单独的模型来处理特定的缺失模态设置。此外,这些模型是为特定任务设计的,例如,分类模型不易适应分割任务,反之亦然。在本文中,我们提出了共享特定特征建模 (ShaSpec) 方法,该方法比解决上述问题的竞争方法简单得多,也更有效。ShaSpec 旨在通过学习共享和特定特征来更好地表示输入数据,从而在训练和评估期间利用所有可用的输入模态。这是通过一种依赖于基于分布对齐和域分类的辅助任务以及残差特征融合程序的策略实现的。此外,ShaSpec 的设计简单性使其易于适应多种任务,例如分类和分割。在医学图像分割和计算机视觉分类方面进行了实验,结果表明 ShaSpec 的表现远胜于竞争方法。例如,在 BraTS2018 上,ShaSpec 将增强肿瘤的 SOTA 提高了 3% 以上,将肿瘤核心的 SOTA 提高了 5%,将整个肿瘤的 SOTA 提高了 3%。1
AmSafe 约束装置采用了最先进的技术,可供乘客和机组人员使用。我们使用先进的材料、制造技术、内部动态测试和持续的研究与开发,以确保乘客和机组人员的安全。
检测化学和生物物质,以涉及各种应用方案,例如可穿戴电子设备,智能点(POC)诊断,环境监测等。[1,2]要适当地满足这些新兴要求,理想的生化传感器应具有诸如高灵敏度,长期鲁棒性,快速响应,实时监测能力,出色的选择性,低单位成本,检测下限,较大的动态范围,低功耗等等等特性[3]但是,人类仍然需要进行陡峭的攀登之旅才能实现这些目标。值得注意的是,2019年冠状病毒病的全球大流行(Covid-19)表明,我们的技术储备在满足这种紧急,庞大和多功能的要求方面并没有充分准备,并引起了对生化感测技术的极大关注。迄今为止,包括化学主义的几种主要技术路线,[4,5] plasonic,[6,7]电化学,[8,9]声传感器,[10,11]等。已经开发出来,每个传感器中的每一个都在某些上述方面具有针对各种实际应用方案的特定优点。纳米制造技术的快速开发用于不同材料和各种结构,由于其小特征和主动结构特性,例如高地表到数量,独特的物理特性,独特的物理特性等,戏剧性地增强了这些传感设备的性能。[12–14]
第一次世界大战期间,英国在西线发展空中武器,代表着国家资源利用方式的一次彻底、前所未有的变革,即利用技术机会取得战术和作战优势。后勤能力是空中优势和“现代战争方式”——间接、可预测的炮火——的先决条件。皇家飞行队的后勤参谋由准将罗伯特·布鲁克-波普汉姆领导,在满足三维战争需求方面表现出了相当大的灵活性。维持足够数量的前线飞机需要大量熟练和半熟练的人员,他们大多位于战区之外,以持续的高节奏工作,同时应对快速的技术变化和高损耗。这些要素形成了一个复杂、动态和集成的网络,该网络还具有部分自我维持能力,即以打捞和维修的形式,能够弥补飞机和航空发动机生产的不足以及不可预测的需求。西线战场制定的后勤原则为英国皇家空军在第二次世界大战中的胜利奠定了基础,并预示了当今全球供应链的管理实践,同时也证明了后勤和空中力量的持久相互依存关系。
U U n n i i v v e e r r s s i i t t y y o o f f P rr e e t t o o rr i i a a e e t t d d – – W W i i l l s s o o n n , , J J ( ( 2 2 0 0 0 0 5 5 ) )
点云经常包含噪声和异常值,为下游应用带来障碍。在本文中,我们介绍了一种新颖的点云去噪方法。通过利用潜在空间,我们明确地发现噪声成分,从而可以提取干净的潜在代码。这反过来又有助于通过逆变换恢复干净点。我们网络中的一个关键组件是一个新的多层图卷积网络,用于捕获从局部到全局各个尺度的丰富几何结构特征。然后将这些特征集成到可逆神经网络中,该网络双射映射潜在空间,以指导噪声解缠结过程。此外,我们使用可逆单调算子来模拟变换过程,有效地增强了集成几何特征的表示。这种增强使我们的网络能够通过将噪声因素和潜在代码中的内在干净点投影到单独的通道上来精确区分它们。定性和定量评估均表明,我们的方法在各种噪声水平下都优于最先进的方法。源代码可在 https://github.com/yanbiao1/PD-LTS 获得。
2024 年 5 月 13 日 — b.董事会应按照本信函和 FY-25 中的所有指导进行。行政选举委员会训令,参考 (a)。2.职能。
2024 年 5 月 13 日 — b. 董事会应按照本信函和 FY-25 中的所有指导方针行事。行政遴选委员会准则,参考 (a)。2. 职能。
从单个视图中恢复3D场景几何形状是计算机视觉中的基本问题。虽然经典的深度估计方法仅推断出2.5D场景表示为图像平面,但最新的基于辐射范围的aperach是重建完整的3D代表。然而,这些方法仍然在被占地的区域困难,因为没有视觉观察的几何形状需要(i)周围的语义知识,以及(ii)关于空间上下文的推理。我们提出了Kyn,这是一种单视场景重建的新方法,其原因是语义和空间上下文来预测每个点的密度。我们引入了一个视觉模块模块,以使用细粒度的语义信息丰富点特征。我们通过语言引导的空间注意机制在整个场景中汇总了点表示,以产生意识到3D语义环境的每点密度预测。我们表明,与预测每个3D点的密度相比,Kyn改善了3D形状的恢复。我们在Kitti-360上实现了最新的场景和对象重建结果,并且与先前的工作相比,零弹性概括的改进。项目页面:https://ruili3.github.io/kyn。
