从单个视图中恢复3D场景几何形状是计算机视觉中的基本问题。虽然经典的深度估计方法仅推断出2.5D场景表示为图像平面,但最新的基于辐射范围的aperach是重建完整的3D代表。然而,这些方法仍然在被占地的区域困难,因为没有视觉观察的几何形状需要(i)周围的语义知识,以及(ii)关于空间上下文的推理。我们提出了Kyn,这是一种单视场景重建的新方法,其原因是语义和空间上下文来预测每个点的密度。我们引入了一个视觉模块模块,以使用细粒度的语义信息丰富点特征。我们通过语言引导的空间注意机制在整个场景中汇总了点表示,以产生意识到3D语义环境的每点密度预测。我们表明,与预测每个3D点的密度相比,Kyn改善了3D形状的恢复。我们在Kitti-360上实现了最新的场景和对象重建结果,并且与先前的工作相比,零弹性概括的改进。项目页面:https://ruili3.github.io/kyn。
相机曝光控制是通过控制曝光时间,增益和光圈来调整展示水平的任务,以达到给定场景的所需亮度和图像质量水平。调整较差的暴露参数导致暴露过度,暴露不足,模糊或嘈杂的图像,这可能会导致基于图像的应用程序中的性能降解,并且在最坏的情况下甚至是威胁生命的事故。因此,找到适当的相机暴露是确保计算机VI- sion应用功能的第一步,例如对象检测[5,16],语义分割[9,17],深度估计[10,26]和视觉传感器[1,13]。相机外观控制中有几个基本要求。必须保证快速收敛以在动态降低的情况下保持适当的暴露水平。此外,曝光控制环是相机系统中最低的循环之一。因此,必须考虑轻巧的算法设计用于车载级操作。最后,不应牺牲融合图像的质量以满足要求。此外,同时控制的参数数的数量也很重要,因为它会影响收敛时间和收敛图像的最终质量。单一控制方法[14,18,20]以一种方式控制暴露参数,以达到所需的暴露水平,而不是控制暴露参数。但是,收敛的参数通常不是最佳的,例如[长时间曝光时间,低增益]和[短曝光时间,高增益]对。结果,该值导致不良图像伪像,例如由于长时间的暴露时间或由于高增益而引起的严重噪声而导致运动模糊。关节曝光参数控制[7,8,8,21,23,24]通常需要在广泛的搜索空间中进行多个搜索步骤,以找到最佳组合。结果,它们会引起闪烁效果和缓慢的收敛速度。此外,由于其优化算法[7,8],图像评估指标[7,8,20,21]和GPU推论,因此需要高级计算复杂性[23]。在本文中,我们提出了一种新的联合暴露参数控制方法,该方法利用了增强学习来实现即时收敛和实时处理。所提出的框架由四个贡献组成:•简化的训练场,以模拟现实世界的di-verse和动态照明变化。•闪烁和图像属性感知奖励设计,以及用于实时处理的轻巧和直观的状态设计。•静态的动态照明课程学习,以提高代理的暴露能力。•域随机技术减轻训练场的限制并在野外实现无缝的一般性,而无需额外的训练。
*作者对本手稿的概念和写作也同样贡献了康奈尔大学,机械和航空航天工程。B哈佛大学,工程与应用科学学院。 c ku Leuven,生产工程。 d空军研究实验室,材料和制造局。 e陆军研究实验室,能源和生物技术部。 f陆军研究实验室,自治系统部。 g Max Planck智能系统研究所,机器人材料部门。 h佛蒙特大学,计算机科学。 i剑桥大学,工程系。 前言:自主机器人由驱动,能量,感觉和控制系统组成,该系统由不一定要用于多功能性的材料和结构构建。 然而,机器人努力模仿的人类和其他动物在细胞,组织和器官水平上包含高度复杂和相互连接的系统,这些系统允许同时执行多种功能。 在这里,我们研究了自然如何建立具有具体能量的自动驾驶机器人的新范式。 目前,大多数不受限制的机器人都使用电池来存储能量并为其操作供电。 为了延长其操作时间,必须与支撑结构同时添加其他电池块,从而增加其体重并降低其效率。 能源储能技术的最新进步使化学或电能源可以直接体现在用于创建机器人的材料和机械系统中。B哈佛大学,工程与应用科学学院。c ku Leuven,生产工程。d空军研究实验室,材料和制造局。e陆军研究实验室,能源和生物技术部。 f陆军研究实验室,自治系统部。 g Max Planck智能系统研究所,机器人材料部门。 h佛蒙特大学,计算机科学。 i剑桥大学,工程系。 前言:自主机器人由驱动,能量,感觉和控制系统组成,该系统由不一定要用于多功能性的材料和结构构建。 然而,机器人努力模仿的人类和其他动物在细胞,组织和器官水平上包含高度复杂和相互连接的系统,这些系统允许同时执行多种功能。 在这里,我们研究了自然如何建立具有具体能量的自动驾驶机器人的新范式。 目前,大多数不受限制的机器人都使用电池来存储能量并为其操作供电。 为了延长其操作时间,必须与支撑结构同时添加其他电池块,从而增加其体重并降低其效率。 能源储能技术的最新进步使化学或电能源可以直接体现在用于创建机器人的材料和机械系统中。e陆军研究实验室,能源和生物技术部。f陆军研究实验室,自治系统部。g Max Planck智能系统研究所,机器人材料部门。h佛蒙特大学,计算机科学。i剑桥大学,工程系。前言:自主机器人由驱动,能量,感觉和控制系统组成,该系统由不一定要用于多功能性的材料和结构构建。然而,机器人努力模仿的人类和其他动物在细胞,组织和器官水平上包含高度复杂和相互连接的系统,这些系统允许同时执行多种功能。在这里,我们研究了自然如何建立具有具体能量的自动驾驶机器人的新范式。目前,大多数不受限制的机器人都使用电池来存储能量并为其操作供电。为了延长其操作时间,必须与支撑结构同时添加其他电池块,从而增加其体重并降低其效率。能源储能技术的最新进步使化学或电能源可以直接体现在用于创建机器人的材料和机械系统中。这种观点突出了体现能量的新兴例子,重点介绍了持久的自主机器人的设计和制造。
幻觉是对多模态大语言模型(MLLM)的普遍挑战的幻觉,极大地阻碍了他们需要精确判断的真实用法。现有方法可以通过特定设计的数据进行培训,或通过其他来源的特定知识来缓解此问题,从而产生了不可避免的额外费用。在本文中,我们提出了一种新型的MLLM解码方法,该方法基于o-vertust pe nalty和r eTroptoction-llocation策略,它是一种几乎免费的午餐,可以减轻幻觉问题,并没有其他数据,知识,知识或培训。我们的方法始于一个有趣的观察结果,即,大多数幻觉与自我注意力矩阵所表现出的知识聚集作用紧密相关,即MLLM倾向于通过关注一些摘要的代价来产生新的代币,但并非所有以前的代币。这种部分过度信任的倾向会导致忽略图像令牌,并用幻觉描述图像内容。基于观察结果,Opera在梁搜索解码过程中引入了对模型逻辑的惩罚术语,以使Miti-Gate the Trust问题以及回滚策略回顾了在预先生成的令牌中存在摘要令牌的存在,并在必要必要时重新分配给标记。通过广泛的实验,Opera在不同的MLLM和指标上表现出明显的幻觉降低性能,证明其有效性和性质。我们的代码为:https://github.com/shikiw/opera。
2022 年 5 月 3 日 — 推荐担任航空少校指挥官的军官名单。军衔。上尉。上尉。上尉。上尉。上尉。上尉。上尉。CDR。CDR。CDR。CDR。CDR。CDR。CDR。CDR。
在Marwan Hamze博士的监督下,该项目是在东京科学大学的吉田教授实验室的国际四个月实习的一部分。主要目的是为加强机器人手臂控制学习的应用的应用做出贡献。我的工作包括在模拟和真实环境中为机器人组开发和实施控制算法。强化学习使避免复杂的运动学模型成为可能,从而为机器人提供通过与环境直接互动来优化其行为的能力。我将精力集中在优化XARM6机器人手臂控制上,并从科学文献中适应方法。我在模拟中首先测试了这些算法,然后将它们应用于真实环境以评估其稳健性。我的目标是获得加强对人形机器人控制的技能,以控制川崎的Kaleido机器人,尺寸为1.80 m,重80 kg。这个项目使我能够增强机器人技术和人工智能方面的技术技能,同时促进该扩展领域应用的研究。
# Springer-Verlag Berlin Heidelberg 2011 本作品受版权保护。保留所有权利,无论涉及全部还是部分材料,具体而言是翻译、重印、重新使用插图、朗诵、广播、以缩微胶片或任何其他方式复制以及存储在数据库中的权利。 仅根据 1965 年 9 月 9 日现行版本的德国版权法的规定,才允许复制本出版物或其中的部分内容,并且必须始终获得 Springer 的使用许可。违反者将根据德国版权法受到起诉。 本出版物中使用的一般描述性名称、注册名称、商标等并不意味着(即使在没有具体声明的情况下)这些名称不受相关保护法律和法规的约束,因此可以自由使用。
尽管隐式神经表征 (INR) 近期取得了进展,但对于基于坐标的 INR 多层感知器 (MLP) 来说,学习跨数据实例的通用表征并将其推广至未见实例仍然具有挑战性。在这项工作中,我们为可推广的 INR 引入了一个简单而有效的框架,该框架使基于坐标的 MLP 能够通过仅调节早期 MLP 层中的一小组权重作为实例模式组合器来表示复杂数据实例;其余 MLP 权重学习跨实例通用表示的模式组合规则。我们的可推广 INR 框架与现有的元学习和超网络完全兼容,可用于学习预测未见实例的调节权重。大量实验表明,我们的方法在音频、图像和 3D 对象等广泛领域都实现了高性能,而消融研究验证了我们的权重调节。
(a) 2015 年 11 月 24 日,在尊敬的总理访问新加坡期间,印度机场管理局 (代表印度政府) 和新加坡公共合作企业 (代表新加坡政府) 签署了一份谅解备忘录。谅解备忘录的目标是从斋浦尔和艾哈迈达巴德机场双方商定的合作领域开始,在民航领域开展相互合作。合作领域可能包括总体规划和设计、交通发展、商业发展、服务质量改进、培训和发展、货物处理和管理、维护和大修、运营和管理以及任何其他共同感兴趣的领域。 (b) 双方已决定签署民航部和加拿大交通部之间的谅解备忘录,以深化民航领域的合作。本谅解备忘录的目的是促进和扩大合作
Bozorgmehry Boozarjomehry,G。(2025)。通过模仿学习和强化学习工程设计自动化(硕士论文,加拿大卡尔加里大学,卡尔加里大学)。从https://prism.ucalgary.ca检索。
