通过应用适当的振幅和参数的电场脉冲来提高膜渗透率。此方法称为“电抛液”或“电穿孔”(EP)。使用EP应用,在正常细胞条件下无法穿越膜的颗粒可以通过膜。强烈和短期的电脉冲导致细胞膜上的跨膜电位(TMP)上升(1-5)。当TMP达到临界值时,水孔的形成将允许通过膜进行分子过渡。尽管无法完全表达分子水平的精确机制,但在观察到最高TMP的膜区域已经证明了分子流量(6-8)。EP的有效性取决于应用的电脉冲参数(持续时间,强度脉冲形状和脉冲数)。基于这些参数的影响,EP可以是可逆的或不可逆的(9-11)。可逆EP在医学和生物技术领域中有许多应用,包括电疗疗法和电化学疗法(ECT)(5,12)。不可逆的EP用于肿瘤消融(由于其非热作用)和灭菌目的(11-13)。
幽门螺杆菌(H. pylori)是一种革兰氏阴性、微需氧、螺旋状细菌,定植于人类胃粘膜(Malfertheiner et al., 2023),存在于全球超过 50% 人口的肠道中(García et al., 2014)。虽然感染通常无症状,但慢性感染可导致胃炎、胃溃疡、粘膜相关淋巴组织 (MALT) 淋巴瘤和胃腺癌(Diaconu et al., 2017;Kusters et al., 2006)。目前,H. pylori 感染的治疗多为质子泵抑制剂 (PPI) 与两种抗生素 (克拉霉素、甲硝唑或左氧氟沙星) 联合使用 (Lee 等,2022;Azrad 等,2022)。然而,许多流行病学研究表明,近年来 H. pylori 抗生素耐药率有所上升,影响了治疗效果 (Azrad 等,2022;Kuo 等,2017)。
欧洲海洋环境中的渔业使用不同类型的移动和静态渔具,这些渔具会接触到海床,包括在水中和海床上拖曳的移动式触底渔具 (MBCG)。本研究探讨:在欧盟海洋保护区 (MPA) 中,可以部署哪些创新渔具来替代底拖网捕捞;实施此类创新的有效性和可行性;以及对维持和恢复生物多样性的环境和社会经济影响。研究表明,通过创新减轻对海床的影响可能不足以实现保护目标。由于缺乏自愿采用,最有前景的创新必须强制实施。它建议将 MBCG 排除在被认为易受底捕捞影响的指定 MPA 之外。到目前为止,缺乏对影响较小的渔具的创新或不影响捕捞率的解决方案。当渔民增加努力来弥补捕捞效率的损失时,这会导致影响的净增加。排除 MBCG 可能只会带来有限的位移效应,如果未来的 MPA 指定能够更好地匹配需要保护的敏感特征,这种效应可能会更大。目前,不需要停止使用其他捕鱼技术(例如被动渔具),因为它们不会影响存在脆弱海床的 MPA。然而,一些 MPA 对被动渔具很敏感,如果创新不能将脆弱物种的兼捕量减少到欧盟共同渔业政策和海洋战略框架指令认为可接受的水平,则应限制这些技术。
摘要:在较早的研究中揭示了电池的循环商业模型,以实现经济生存能力,同时减少原材料的总资源消耗。这项研究的目的是通过创建不同的场景来衡量首选业务模型的经济绩效,以比较七个不同的欧洲地区和四种能源管理策略的第二人寿(花费)和新的电池投资。的发现显示了总共模拟了34个场景的经济能力水平,包括每千瓦时的直接节省,每年的能源成本总变化,电池充电/放电周期和比较盈亏平衡的分析。还根据日用的电价和太阳辐射来测量区域效应。最低回报时间是电池系统投资成本的7年。最可行的能源管理策略也具有最多的充电/放电周期数量,从而降低了电池寿命。第二次寿命电池的投资与新电池相比,由于投资成本较低,回报时间降低了0.5至2年。但是,与新电池(5至15年)相比,估计的寿命范围(3至10年)较低,该电池质疑所研究场景的循环商业模型可行性。应将能源管理策略合并并定制,以增加经济利益。
尽管大约83%的个体在中风中生存,但由于他们获得的皮质梗塞,他们通常会在运动执行(ME)功能上遭受重大损失。以前认为由于中风损伤而导致的重要ME能力丧失是不可逆转的。主动运动疗法表现出巨大的希望,但取决于运动性能,不包括许多原本合格的患者。运动图像(MI),涉及使用镜像神经元来想象运动活动的过程,已成为重新获得某些物理能力因中风损害而失去的物理能力的途径。本文研究了先前的研究,以比较患有脑病变的个体的大脑激活和连通性的强度,而那些不像我尝试过我和MI任务的人相比。本文审查了案例研究,研究了基于皮质损伤和其他变量(例如年龄)的位置,调查了运动成像与物理疗法的直接效应以及运动成像的局限性。本综述中分析的发现表明,MI将是物理疗法的有益补充,并且可以在无法通过严重运动障碍而无法进行物理治疗的个体中刺激运动诱发潜力(MEP)的可行选择。不管脑部病变的存在如何,运动图像在增强治疗或刺激神经肌肉途径方面一直对运动康复产生积极影响。因此,我们得出的结论是,MI是大多数运动皮质萎缩患者的运动恢复的可行补充治疗计划。
抽象的DNA复制面临着源自内源性或E X强度来源的DNA病变的挑战,导致单链DNA(SSDNA)的积累,从而触发了Atr c Hec Kpoint响应的激活。为在存在受损的DNA的情况下完成基因组复制,细胞采用DNA损伤耐受机制,不仅在停滞的复制叉上运行,而且在ssDNA间隙下,源自病变下游DNA合成的SSDNA间隙。在这里,我们证明了人类细胞积累了复制后的ssDNA间隙。t hese间隙,由远程切除exo1和dna2引起了b y p rimpol谴责,并构成了与失速的叉子相比,ssDNA信号的主要起源是负责复制应力的ATR激活的主要起源。引人注目的是,当与BRCA1缺乏症结合使用时,EXO1或DNA2的丢失会导致合成致死性,但不能导致BR Ca2。他的现象与仅BRCA1仅有助于ssDNA间隙的扩展的观察结果一致。非常明显的是,BRCA1缺陷型细胞会上瘾Exo1,DNA2或BLM的Xpression。他对Br Ca1突变肿瘤的远距离切除术的依赖,从而阐明了这些癌症的潜在治疗靶标。
a b s t r a c t细胞通过整合素与细胞外基质(ECM)有关,并感觉到各种组织引起的刚度变化,这会影响癌细胞的治疗和对照。改善癌症治疗策略需要了解底物刚度如何影响癌细胞行为及其对治疗的反应。这项研究最重要的新颖性之一是研究对具有不同弹性模量的底物培养的癌细胞的药物浓度。这项研究的另一种新颖性是研究针对癌细胞骨骼结构的抗癌药物与具有不同弹性模量不同的ECM的骨骼结构的作用。在本研究中,使用测定来研究不同ECM的弹性模量对细胞治疗的影响。首先,使用MTT分析研究了不同药物浓度对不同底物培养的癌细胞的影响,然后进行了测试以评估细胞活力,迁移和基因在不同底物上培养的细胞的表达。结果表明,与培养基和僵硬的底物相比,底物刚度显着影响药物反应,软底物显示出更高水平的细胞毒性,凋亡诱导和抗转移性。此外,凋亡基因表达的变化表明药物反应,细胞命运测定和底物刚度之间的机械关系。这些发现突出了在癌症治疗策略中使用生物力学线索的重要性,并指出使用底物刚度作为治疗干预和预后标记的可能性。
学位课程是获得学士、硕士或博士学位的学习课程,只能由学术单位或学术单位内的课程提供。学位课程位于院系和/或学校和学院内。我们认识到,院系或其他学术单位内课程的可行性必须从整体上看待,特别是因为学位课程与提供辅修课程、核心课程、微证书、证书课程和其他对机构课程有价值的学术课程有关。此外,我们要承认,虽然学位课程中选修某一专业的学生人数很重要,但它并不是决定其可行性的唯一因素。非主修学生课程产生的学生学分 (SCH) 等因素,
本研究使用 FYM27 和 R1492 引物进行 16S rRNA 基因分析,对 Lactiplantibacillus pentosus v390 进行分子鉴定。在 pH 2.5、3.5 和 4.5 的酸性条件下评估了菌株的生存力,并研究了对 0%、0.3%、0.5% 和 0.7% 浓度胆汁的抵抗力。评估了抗氧化活性、胆固醇吸收、疏水性、产生 DNase 酶的潜力、生物胺、溶血活性和对常见治疗性抗生素的耐药性。使用孔板和纸片扩散法检查了该菌株对致病菌(痢疾志贺氏菌、鼠伤寒沙门氏菌、大肠杆菌、金黄色葡萄球菌、单核细胞增生李斯特菌和枯草芽孢杆菌)的抗菌作用。结果表明,L. pentosus v390菌株在不同pH水平下均具有生存能力,但在pH 2.5下储存3小时后细菌数量下降。该菌株在不同胆汁盐浓度下均具有生长能力。L. pentosus v390对抗生素呋喃西林具有中等抵抗力,对萘啶酸和亚胺培南具有抗性,对万古霉素、庆大霉素、氯霉素、青霉素和环丙沙星等抗生素敏感。该菌株的疏水性、抗氧化活性(DPPH和ABTS)和胆固醇吸收率分别为46.50±0.38%、37.20±0.40%、39.90±0.45%和36.50±0.47%。未观察到该菌株产生DNase酶、生物胺或溶血活性。 L. pentosus v390 对革兰氏阳性菌表现出更强的抗菌作用。结果表明 L. pentosus v390 具有理想的益生菌特性,需要进一步研究以确认其在食品产品开发中的应用潜力。
摘要:随着全球运输部门越来越多地采用电动汽车,对先进和可访问的充电基础设施的需求正在上升。除了在家电动汽车(EV)充电外,还越来越需要迅速开发商业直接电流快速充电(DCFC)站,以满足随时随地的电动汽车充电需求。虽然政府资金可用于支持美国EV充电网络的扩展,但建立强大的全国电动汽车充电基础设施需要大量的私营部门投资。进行了这项研究是为了评估美国快速充电站的各种业务模型的经济可行性,并探索了不同的运营策略,包括唯一所有权和与公共和私人实体的合作企业。结果表明,根据美国目前的采用和利用率,涉及与公共合作伙伴合作的业主 - 经营者的业务模型可确保盈利能力并保护DCFC站的投资免受财务损失。这项研究还强调,要求收费和电力零售价格是影响DCFC站盈利能力的因素。