Detected Defects Shorts, opens, minimum line/space violations, nicks, protrusions, dishdowns, copper splashes, pinholes, missing or excess features, wrong size and position of features, clearance and split plane violations, blocked holes, annular ring violations, SMT violations, black spots, wire bonding pad defects, flip chip pad defects, defects in through blind vias
Detected Defects Shorts, opens, minimum line/space violations, nicks, protrusions, dishdowns, copper splashes, pinholes, missing or excess features, wrong size and position of features, clearance and split plane violations, blocked holes, annular ring violations, SMT violations, black spots, wire bonding pad defects, flip chip pad defects, defects in through blind vias
摘要 - 这项工作通过基于硅VIA的降温功率芯片开发了热模型的分析热模型,与发表的文献相比,其热路径截然不同。通过硅VIA的热扩散角度和横向热传递,以及其热应力对活动区域中载流子迁移率的影响。在三维集成电路中使用的传统一维热模型和有限元分析结果用于验证所提出模型的准确性。通过衬里厚度和粘结层厚度,相对于填充 - via半径,散装的Si厚度的温度升高。 可以发现,与仿真结果相比,提出的热模型比一维模型优于一维模型,这表明通过基于硅VIA基于基于硅VIA的三维整合电路的热管理有所改善。 索引项 - 直通式词,热模型,热机械可靠性,有限元分析相对于填充 - via半径,散装的Si厚度的温度升高。可以发现,与仿真结果相比,提出的热模型比一维模型优于一维模型,这表明通过基于硅VIA基于基于硅VIA的三维整合电路的热管理有所改善。索引项 - 直通式词,热模型,热机械可靠性,有限元分析
Sara Iraci 等人在本文中,我们介绍了一种基于 NbxTi(1-x)N (NbTiN) 的超导双金属级 (2ML) BEOL 单元工艺,该工艺是在 imec 的 300 毫米试验线上使用半镶嵌流程和 193i 光刻技术开发的。该单元工艺的特点是直接金属蚀刻线的最小临界尺寸 (CD) 为 50 nm,浅平面化通孔的最小 CD 为 80 nm,沉积温度为 420 °C,与 CMOS BEOL 电介质兼容。50 nm NbTiN 线的归一化线电阻表明,95% 的器件符合预期电阻 800-1200 Ω/µm,与覆盖膜电阻率一致。低温测量表明,NbTiN 导线和通孔的临界温度为 12-13.5 K,临界电流密度为 80- 113mA/µm2。▪ 低电阻堆叠通孔金属化用于未来的互连,Marleen H. van
随着互连密度不断缩小,以及制造更细间距基板的成本不断上升,使用传统有机堆积基板的倒装芯片封装在细间距布线方面面临着重大挑战。为了满足这些需求,TSV 中介层应运而生,成为一种良好的解决方案 [1-3]。TSV 中介层提供高布线密度互连,最大限度地减少 Cu/低 k 芯片与铜填充 TSV 中介层之间的热膨胀系数 (CTE) 失配,并由于芯片到基板的互连更短而提高电气性能。TSV 中介层晶圆是通过在硅晶圆上蚀刻通孔并用金属填充通孔来制造的。业界常用的两种 TSV 方法涉及“先通孔/中通孔”和“后通孔”工艺流程。本文中的工作使用“先通孔/中通孔”流程,因为它提供了互连密度的最大优势。通常,使用深反应离子蚀刻 (DRIE) 工艺蚀刻 TSV 通孔以形成高纵横比通孔。 TSV 的直径通常为 10-20 微米,深度为 50-100 微米。TSV 的壁衬有 SiO2 电介质。然后,形成扩散屏障和铜种子层。通过电化学沉积用铜填充通孔。使用化学机械抛光/平坦化 (CMP) 去除铜覆盖层。使用标准后端制造工艺在中介层顶部形成 M1 – Mx 的互连线。中介层顶部涂有钝化层并形成微凸块焊盘。
可以使用自下而上的工艺完全避开蚀刻损伤的关注点。选择性面积生长(SAG)的过程将vias涂到掩模层上的基板上,然后将图案化的底物加载以进行生长。调整生长条件,使外观仅发生在定义的开口内。这会导致纳米(微)结构的生长,其尺寸和形状与底物5,6时所定义的尺寸和形状完全匹配。此外,这些纳米结构不需要暴露于任何干蚀刻过程以定义装置台面,从而防止形成与该过程相关的表面缺陷。这些优势对于任何(子)微米级设备的高效效率是必要的。纳米结构也可以在非本地基材上生长,有可能打开更多新应用7。此外,
• 印刷电路板(PCB)设计:多层电路、高密度技术(微孔、盲孔和埋孔)、控制阻抗、走线长度匹配、高频差分信号(FPGA、DDR3 存储器等)、EMI/EMC 约束、基板(FR4、聚酰亚胺、Rogers、硅等)、柔性/刚挠电路;
摘要Via地面(GND)结构构成设计高性能印刷电路板(PCB)的最有用的元素之一。与VIA的电气连接成为实施各种电子函数的关键常规解决方案。但是,到目前为止,VIA从未用于设计负组延迟(NGD)电路。为了回答这个好奇的问题,本文介绍了有关使用Via Ground的低通NGD功能设计可行性的原始研究。在拓扑描述之后,建立了VIA参数功能的NGD分析。制定了允许合成NGD函数指定功能的通过功能的设计方程式。与商业工具之间的计算和模拟之间的比较验证了开发的NGD理论。正如预期的那样,在一百毫米截止频率上以百秒秒为单位的ngd值在理论模型和仿真之间具有良好的一致性获得。此外,时域分析了通过NGD结构的确认,可以在任意波形输入信号的时间吸收时生成输出信号,显示有限的带宽。
