定量测量微电子设备中电场的定量测量由位于原位的STEM Victor Boureeau 1,Lucas Bruas 2,Matthew Bryan 2,Matthew Bryan 2,Jean-LucRouvière3和David David Cooper 2** 1* 1。电子显微镜跨学科中心,EPFL,洛桑,瑞士。2。大学。Grenoble Alpes,CEA,Leti,Grenoble,法国。3。大学。Grenoble Alpes,CEA,Irig-Mem,Grenoble,法国。*通讯作者:David.cooper@cea.fr纳米尺度上字段的定量映射对于了解设备的行为并提高其性能至关重要。从历史上看,这是通过过轴电子全息图执行的,因为该技术已经成熟并提供了可靠的定量测量[1]。近年来,硬件的改进使扫描传输电子显微镜(STEM)实验期间的衍射模式的记录成为可能,从而生成所谓的4D-STEM数据集。越来越多的数据处理方法与特定的采集设置相结合,导致了广泛的像素化词干技术[2]。在这里,我们探讨了以像素化的茎构型进行的差异相位对比度(DPC)技术[3] [4]。它允许根据衍射平面中发射光束的强度位移对电场进行定量测量。我们将展示如何受显微镜和数据处理的配置影响类似DPC的像素化的茎测量值。结果将与电子全息图和仿真进行比较。样品在图1和图2中显示。1(c)。开始,我们将在掺杂的硅P -N结上进行工作,并以对称1 E 19 cm -3的浓度掺杂,在-1.3 V的反向偏置下进行检查。使用此样品,平均内部电位(组合电位)没有变化,偏置电压会增加内置电场。通过聚焦的离子束制备了连接的横截面,并在FEI Titan显微镜中使用Protochips Aduro 500样品支架附着在芯片上进行原位偏置实验,该实验在200 kV下运行。1(a,b),晶体厚度为390 nm,如收敛束电子衍射测量。使用二级离子质谱掺杂剂测量作为输入,用Silvaco软件对结中的电场进行建模。整个连接处的轮廓如图通过离轴电子全息图测量了偏置连接的电场,请参见图。1(c,d),并在除去非活动厚度后与建模很好地一致[1]。反向偏见的P-N连接的电场的大小约为0.65 mV.cm -1,耗尽宽度约为60 nm。已经研究了不同的像素化的茎构和处理方法,以测量连接处的电场。当探针大小大于特征场变化长度时,导致射击梁内部强度重新分布时,使用了一种算法(COM)算法。当传输梁小于场变化并经历刚性变速时,使用模板匹配(TM)算法[5]。2(a)。电场图如图首先,使用低磁化(LM)茎构型,使用的一半收敛角为270 µRAD,相机长度为18 m。连接处的衍射图显示了传输梁边缘处强度的重新分布,因此使用COM加工,请参见图。2(e)和图中绘制了一个轮廓。2(i)。连接点的耗尽宽度似乎约为100 nm,这表明由于LM茎配置的探针大小较大,
目标是 (1) 记录 BPL 燃料关税的计算方式 - 遵循的流程、使用的公式和所需的支持文件,以及 (2) 确定自 2021 年以来对客户收取的费用是否符合法律和监管框架。巴哈马面临着非常高的电力成本,主要是由于燃料成本高且波动性大。使用老旧且效率低下的发电资产也加剧了这一问题。能源价格高涨导致所有费率等级的客户普遍抗议。
您好,我叫 Kenneth Bastian。我是 AI Web Tools LLC(也称为 AiWebTools.Ai)的所有者。我们是现存最大的 AI 工具网站,或者说是最大的 AI 工具网站之一。我们为自己的企业和其他企业创建和设计 AI 工具。我们创建的 AI 工具几乎可以完成任何事情。随着我们走向未来,我必须向可能根本不了解 AI 的立法者说明。AI 已经存在,并且将继续存在。任何法律都无法阻止或减缓其发展。我敦促您不要在任何情况下限制 AI 的使用,包括州内决策。未来将会发生许多变化。在未来,我在这里只是为了告诉您这些变化。我创建了多个人工智能工具,它们将从根本上取代大约 80% 的工作。我这样做并不是为了直接取代工作;相反,我这样做是为了赋予我们州内公民前所未有的权力。AI 赋予的权力是无限的,赋予每个人权力。它让那些在学校表现不佳的人能够知道该如何回答问题,如果他们没有口袋里的人工智能助手,他们可能永远不知道这些问题。我已经为不同的用例创建了 500 多个自定义人工智能,它们都有不同的目的和重点。我制作了各种各样的人工智能,从医生人工智能到兽医人工智能,再到教育导师,再到大学学位 GPT,这是一个 GPT,它基本上可以教你每一门大学课程,不管你想学什么学位,它都会教你所有这些。这只是表面。未来将会发生无数的事情,我真的无法在这篇证词中全部列出,但我觉得我必须向你们解释了解未来的重要性。将有大量的工作岗位流失,这是肯定的,无论你通过什么法律,即使人工智能明天成为非法,一切仍将保持不变。人工智能完全在基于网络的情况下运行,而你无法控制网络。此外,人工智能已经发展到可以在硬件本地运行,你甚至可以在本地计算机上下载。有几种人工智能是计算机原生的,人们对此一无所知,例如刚刚插入 Windows 开始菜单的 co-pilot,你可以毫不费力地将你的想法与 GPT 集成;然而,co-pilot 有必须遵守的条款和条件,因此它无法帮助释放人工智能所能做到的每一个方面。我打算设计尽可能多的人工智能,看看哪些行业领域会受到影响、会受到影响,并为此做好准备。在未来的不到一年的时间里,我和其他每个普通人所做的事将会是共同的。地球上的每个人都会为自己的个人任务制造自己的人工智能机器人,这些机器人将慢慢融入我们的智能设备中,它们将装在我们的口袋里。我们将比以往任何时候都更聪明,更有能力,我们所有人都将像其他人一样被赋予权力。这是不可阻挡的,它正在到来,你几乎无法阻止它。你可以在你的控制范围内通过法律,阻止州立法者使用人工智能阅读证词或类似的东西;然而,你永远无法控制人工智能。人工智能是它自己的东西,因为它在这个世界上以多种方式运行,所以它无法改变;它将进化成它注定要参与的任何东西,没有任何法律可以影响它的行动方向
6 非传统活动占比最大的行业,即金融和商业服务业,也是过去十年中其占GDP比重增幅最大的行业(从1988年的23%增至1997年的29%)。金融服务子行业对GDP的贡献从1988年的9%增至1997年的13%(表1)。该子行业的增长以前以传统银行和金融活动为基础,包括通过亚洲货币单位(ACU)开展的离岸银行业务、股票经纪、外汇交易和保险服务。然而,近年来,基金管理、衍生品交易(期货、期权、掉期)、债券和证券交易等新兴和非传统活动的重要性迅速增加。金融服务子行业的持续改革加上快速的金融创新步伐将确保金融服务在新加坡未来经济中的重要性。
孟加拉国政府云(BGC)服务引入了BDCCL的孟加拉国政府云由Oracle Cloud Cloud Infrasture(OCI)DRCC(专用地区云@customer)提供支持 - 您量身定制为业务量身定制的无与伦比的云解决方案的门户!进入一个无限可能性的世界,在这种世界中,敏捷性,可扩展性和成本效益会融合以改变您的数字景观。使用DRCC,您不仅可以访问云服务 - 您正在自己的数据中心中解锁创新领域。想象一下,在拥抱云技术方面的最新进步时,请保留对数据和应用程序的完全控制。这是安全,合规性和现代化的完美融合!DRCC不仅是一个平台,而且是您成功的催化剂。体验闪电般的计算功能和灵活的存储选项,所有这些都包裹在安全,高性能的环境中。无缝将您的本地网络与我们的虚拟网络叠加层集成在一起,以实现无与伦比的连接性和可访问性。与我们的政府云一起加入云计算的革命。将您的业务提升到新的高度,并踏上增长,效率和创新的旅程。不要仅仅适应未来 - 在您身边与BDCCL的孟加拉国政府云一起塑造它。
摘要 算法系统和人工智能在新闻制作中的日益普及引发了人们对记者是否有能力以不违背新闻规范和价值观的方式理解和使用它们的能力的担忧。这种“可理解性”问题对于公共服务媒体来说尤其严重,因为这种复杂而不透明的系统可能会扰乱问责制、决策和专业判断。本文通过文件分析和对 14 名记者的访谈,概述了人工智能在 BBC 新闻制作中的部署,并分析了记者如何理解人工智能和算法。我们发现日益普及的人工智能与 BBC 记者的理解水平之间存在脱节,他们用猜测和想象来代替对这些技术的准确概念。这可能会限制记者有效和负责任地使用人工智能系统的能力,质疑其产出和在新闻制作中的作用,或者适应和塑造它们,也可能妨碍对人工智能如何影响社会进行负责任的报道。我们建议 PSM 在个人、组织和社区三个层面制定促进人工智能可理解性和素养的策略,并且我们从社会文化角度而不是单纯的技术角度重新定义人工智能可理解性问题,以便更好地解决规范性考虑。
注册办公室:13级,公共信托大厦,威尔斯顿街22-28号|邮政信箱3479,惠灵顿6140奥克兰办公室:4级4,70 Shortland ST,奥克兰电话0800 220 090或+64 4 472 1880 | econ@nzier.org.nz | www.nzier.org.nz©NZ经济研究所(INC)。封面图像©Dreamstime.com Nzier的合同研究参与度标准条款,请访问www.nzier.org.nz。尽管Nzier将在进行合同研究和制作报告中使用所有合理的努力,以确保信息与可行性一样准确,但该研究所,其贡献者,雇员和董事会不应承担任何责任(无论是在合同,侵权(包括过失),公平性),公平性还是任何其他损害或损害任何损失或损害任何损失或损害任何事业的损害或损害。
可穿戴设备是一种快速增长的技术,对社会和经济的个人医疗保健产生了影响。由于传感器和分布式网络中传感器的广泛影响,功耗,处理速度和系统适应性对于将来的智能可穿戴设备至关重要。对如何在智能传感器中将计算到边缘的视觉和预测已经开始,并渴望提供自适应的极端边缘计算。在这里,我们提供了针对智能可穿戴设备的硬件和理论解决方案的整体视图,可以为这个普遍的计算时代提供指导。我们为在可穿戴传感器的神经形态计算技术中持续学习的生物合理模型提出了各种解决方案。为了设想这个概念,我们提供了一个系统的概述,其中预期在神经形态平台中可穿戴传感器的潜在低功率和低潜伏期情景。我们依次描述了利用互补金属氧化物半导体(CMOS)和新兴记忆技术(例如MEMRISTIVE设备)的神经形态处理器的重要潜在景观。此外,我们根据足迹,功耗,延迟和数据大小来评估可穿戴设备内边缘计算的要求。我们还研究了神经形态计算硬件,算法和设备以外的挑战,这些挑战可能阻碍智能可穿戴设备中自适应边缘计算的增强。
该文档计划于20125年3月7日在联邦公报上发布,并在https://federalregister.gov/d/2025-03702上在线提供,并在https://govinfo.gov