Melissa Assel,Sigrid Carlsson,Taylor McCready,Amy Tin,Andrew Vickers和其他MSK同事最终确定了其出版物,标题为“在jama手术中被接受为出版物。作者描述了手术后的预期恢复,使用患者报告的症状监测(恢复跟踪器),来自MSK的乔西·罗伯逊手术中心的五个最常见程序之一的患者之一:前列腺切除术,肾切除术,乳房切除术,乳房切除术,子宫切除术和甲状腺甲状腺素托米。总体而言,症状负担在该人群中是适中的,在术后前三天的严重程度最高。这种详细的远程症状监控数据可以为我们的症状监控计划的进一步实施,传播和维护提供信息,增强患者教育并帮助设定期望。
在这项研究中,不锈钢316L和Inconel 625合金粉是通过使用定向的能量沉积过程加上制造的。对粘合不锈钢316L/Inconel 625样品的硬度和微观结构的热处理效应。微观结构表明,除了几个小裂缝外,不锈钢316L和Inconel 625之间没有次要相和界面区域附近的大夹杂物。TEM和Vickers硬度的结果表明,界面区域的厚度几十微米。有趣的是,随着热处理温度的升高,不锈钢区域的裂纹不会改变形态,而不锈钢316L的硬度值和Inconel 625的硬度值也下降。这些结果可用于使用定向能量沉积的不锈钢316L材料的表面处理管道和阀门,并通过表面处理材料进行表面处理。关键字:定向能量沉积,界面,物理特性,热处理
这项工作表明了碳纤维碳化物(ZN-WC)纳米复合材料的制造和表征,作为潜在的可生物降解材料。通过熔融盐辅助搅拌铸造,随后进行热滚动,实现了Zn基质中高度均匀的WC纳米颗粒分散体。锌的微度和最终拉伸强度分别增强了50%以上和87%,掺入高达4.4卷。%WC纳米颗粒。此外,Zn-WC纳米复合材料保留了高延展性(> 65%)。但是,电导率和热导率分别降低了12%和21%。机械强度的显着增强使纳米颗粒增强的锌成为可生物降解的金属植入物的有前途的候选材料,用于广泛的临床应用,包括骨科和心血管植入物以及可生物吸收性的电子学。
位于谢菲尔德的 Vickers, Sons & Maxim 公司。随后几年,位于霍里奇的兰开夏郡和约克郡铁路公司、位于斯温顿的大西部铁路公司、印花布印刷商协会和位于曼彻斯特的英国西屋电气制造公司也纷纷效仿。1911 年,英国总登记官首次使用打孔卡设备编制英格兰和威尔士人口普查。苏格兰当局也做出了同样的决定。该公司用英国制造的纸张制造了所需的 5000 万张卡片,并与 Kesnor 公司合作制造了特殊的按键打孔机和人口普查计数机,这两台机器都是英国设计的。编制工作在三年内完成,对于这样一个小公司来说,这绝非易事。签订合同时,公司有一支由 5 名成员组成的小团队,但团队热情很高!
氧化铝和氧化石墨烯的增强陶瓷基质复合材料(CMC)已被广泛搜索,但仍未解决的问题,例如石墨烯的最佳分布或纤维纤维和基质之间的效率键。这项工作引入了一种基于Sol-Gel方法的新型制造程序,将Boehmite视为氧化铝前体,而氧化石墨烯纳米片则是增强阶段。通过在温和的条件下通过反应的火花等离子体烧结(RSP)进行样品的完整致密化。结构表征是由XRD,SEM和Micro-Raman以及其他技术进行的,并通过XPS研究了Al-O-C键的存在。通过Vickers的显微指示和纳米构造进行了机械表征。没有观察到有关年轻的模量,硬度或断裂韧性的显着变化,尽管对石墨烯分布的均匀性以及基质和增强阶段之间的化学键进行了改善。
•Jennifer Edmunson博士-MSFC PM MMPACT•Frank Ledbetter博士 - 太空制造业中的中小企业(ISM)和MMPACT•Mike Fiske•Mike Fiske - Jacobs/MSFC元素LEAD MMPACT/OLYMPUS/OLYMPUS•MIKE EFFINGER•MIKE EFFINGER - MSFC Electer -MSCCATS MSCCATS•MSFOTART -TRACICAT•MSFOTICY -JOHN TRACICAT•JOHN TRACICAT•JOHN TRACICAT•JOHN TRACICAT•MSFCICT•JOHN TRACICAT• (PT)高级制造•Mark Hilburger博士 - PT发掘,施工和装备•Jason Ballard - 首席执行官Icon Technologies•Evan Jensen - Evan Jensen - Icon PM MMPACT•搜索+ -Icon/MMPACT LUNAR LUNAR LUNAR建筑设计概念•Bjarke Ingels Group -iCon/mmpact lunar架构概念•彼得·柯林斯(Peter Collins) - 宾夕法尼亚州立水泥和地球聚合物
晚期分子图像技术(AMIT)超导回旋子的内部离子源使用纯tantalum制成的阴极生成高能H-离子束,以生产正电子发射断层扫描的同位素。在服务期间,阴极受到血浆中高能离子的影响。所产生的侵蚀会产生陨石坑,从而降低提取光束的电流密度。当离子源无法再激活时,最终需要更换阴极。这项研究探讨了通过激光金属沉积添加剂制造来修复Amit回旋子中使用的触觉阴极的可能性。首先将受损的部分以3D成像,扫描电子显微镜和Vickers显微硬度为特征,以了解服务过程中发生的损伤机制并量化损害的程度。使用高纯度触觉线和粉末原料进行了测试,并确定了使用高纯度触觉的电线和粉末原料。已经证明了激光金属沉积恢复用于Amit Cyclotron的受损阴极的能力。
• Jennifer Edmunson 博士 - MSFC PM MMPACT • Frank Ledbetter 博士 - SME 空间制造 (ISM) 和 MMPACT • Mike Fiske - Jacobs/MSFC 元素主管 MMPACT/Olympus • Mike Effinger - MSFC 元素主管 MMPACT/MSCC • Tracie Prater 博士 - MSFC 基础表面栖息地 • Dave Edwards 博士 - MSFC 材料科学经理 • Mike Sansoucie - MSFC 投资组合科学家 • John Vickers - 首席技术专家 (PT) 先进制造 • Jerry Sanders - SCLT 原位资源利用 (ISRU) • Mark Hilburger 博士 - PT 挖掘、施工和舾装 • Jason Ballard - ICON Technologies 首席执行官 • Evan Jensen - ICON PM MMPACT • SEArch+ - ICON/MMPACT 月球建筑设计概念 • Bjarke Ingels Group - ICON/MMPACT 月球建筑设计概念 • Aleksandra 博士Radlinska – 宾夕法尼亚州立大学水泥和土工聚合物 • Peter Collins – 宾夕法尼亚州立大学水泥和土工聚合物
•Nicholas John [♣](2021–2022)MS掌握和计算数学数据驱动的网络系统驱动模型。合着的出版物:1出版。•Ivan Jacobs [♣](2022)MS -DATA科学。应用复杂的网络并深入学习分子结构,以预测癌细胞上的免疫系统反应。合着的出版物:1出版。•Swapnil Sagar(2024):MS – Data Science。静态网络上的选民模型。共同撰写的出版物:1中。•Wynette Vickers(2023–2024):MS – Data Science。面部识别。•Asher Christner(2023):MS批准和计算数学。滑坡建模。合着的公共事件:1准备。•Mahlika George(2019-2020):MS – Data Science。分析全国清除犯罪率。•Himaja Mandla(2019):MS Imaging Science。气候网络和季风可变性。•Jen-Li Chen(2019):MS应用统计(Capstone Project)。全球温度的极值分布。其他过去的研究生,在非形式设置(3)
这项研究工作与使用干柠檬皮粉和环氧树脂的复合纤维板的制造有关,这些树脂可用作胶合板或木材的替代品。这项研究的目的是评估这种新型复合纤维板的机械和微观结构特性。评估其吸收能量的强度和能力,对不同的标本进行了不同的测试。为了理解树脂内的形态和填充颗粒分布,还使用扫描电子显微镜(SEM)检查了制造的复合材料的显微结构。根据实验发现,复合材料的机械性能,例如硬度22.45(维克斯),拉伸强度14.7 MPa,弯曲强度27.9 MPa和冲击强度21.76 J/m 2,在胶合板方面显得有前途。此外,SEM研究表明了浪费干燥柠檬皮颗粒(DLPP)和环氧树脂之间的完美键合,从而有助于改善机械性能。