摘要 - 不同的微生物群存在于雨林和红树林植被土壤类型中,但对其人口和多样性的了解不多,因此,进行了这项研究,以评估和比较微生物的季节性变化,以及在尼日利亚州河流州哈科尔特港的两种植被土壤中的植被类型的多样性。在干燥和雨季中收集了顶部土壤(0-15cm)和地下土壤(15-30厘米)的样品,并进行标准分析。cow豆在栽培之前和之后的不同土壤和微生物种群中也进行了种植。结果表明,在干旱季节,红树林和雨林植被类型的微生物种群比其他季节都显着(P≤0.05)。微生物种群的范围是:总杂质细菌7.8-25.0 x105cfu/g和6.6-22.1 x105cfu/g;总核真菌2.0-5.4 x103cfu/g和0.3-0.9 x 103 cfu/g;放线菌0.2-3.7x103cfu/g和0.2-0.9x103cfu/g;硝化细菌0.2-6.9 x102 cfu/g和0.2-5.0x102cfu/g;氮固定细菌(0.2-1.3x102cfu/g和0.2-1.5x102cfu/g)分别用于雨林和红树林土壤。在所有季节中,总共分离出33种细菌,2种放线菌和15种真菌。芽孢杆菌是最主要的细菌,而曲霉菌是两种植被类型和所有季节中最为主要的真菌。牛豆种植和季节性变化后,不同土壤中的微生物种群增加了微生物多样性和种群。索引术语 - 植被,土壤,特征,细菌,真菌
土壤盐度在原发性和次要盐度中有区别。主要的是岩石瓦解的自然过程的结果,该过程释放可溶性盐,例如钠,钙和镁,硫酸盐和碳酸盐,硫酸盐和碳酸盐,通过风和雨水沉积在土壤溶液中。在此过程中最容易运输的盐是氯化钠。这项研究研究了盐度应激对盐敏感和耐盐降低品种(通常称为mung豆)的影响。在培养皿中进行了实验,并应用了120 mM NaCl。这项研究揭示了V. radiata的盐敏感和耐盐线的明显差异。盐敏感品种的芽和根新鲜和干生物量的降低。相比之下,耐盐线的生物量最小降低(新鲜干燥)。07006MB和08009MB在120mm NaCl下的新鲜和干芽生物量略有增加。同样,在07006MB和14005MB中,根新鲜生物质略有增加,但是与120 mm NaCl以下的其他线相比,在14005MB线中观察到干根生物量最大。这些发现为耐盐品种的适应性策略提供了宝贵的见解,为有针对性的育种计划提供了旨在增强这种具有经济意义的豆类盐度弹性的目标的基础。总而言之,这项研究加深了我们对盐度应激对Vigna radiata线生长模式的影响的理解。它为开发能够在盐水环境中繁荣发展的强大农作物品种奠定了基础。
1 ASI-ITRIAIA太空航天局,通过DEL POLITECNICO SNC,00133,意大利00133意大利2意大利军事航空,空军工作人员3,Viale Dell'Younfers N.4,00185罗马,意大利3号Inf-Astro-astro phyic phyic observoration,Turgatory tornation tornatory tornatory tornatory tornatory tornatory tornatory tornatory tornatory torains toragity toraine tornial teraine,turnesse turne surins turga物理学,通过科学研究1,00133意大利罗马5大学,物理和地质学系,通过Pascoli S.N.C.,06124意大利佩鲁吉亚6号地理和火山学研究院,通过Di Vigna Murata 605,som som som solicy,00143 ROME,ITRICTITITO,ITRICTIOS,ITRICTO,TRENTO,di vigna Murata 605 38123意大利特伦托8天文和空间行星学的Inf-Inf-Institute通过Del Fosso del Cavaliere 100,00133 Rome,意大利罗马9 Inf-Artonomical Obtervorator,Trieste,Loc。basovizza n。 302,34149意大利Trieste 10 Infn-Tifpa,通过Sommari 14,38123 Trento,意大利
摘要:蔬菜豆类是碳水化合物,维生素和矿物质的重要来源,以及促进健康的生物活性化学物质。由于消费者对均衡饮食的认识不断增长,对新鲜或加工蔬菜豆类使用的需求不断扩大。因此,维持蔬菜豆类的最佳产量极为重要。在这里,我们试图介绍未经证实的蔬菜豆类的前景,以供食品可用性,可及性和改善生计利用率。研究的注意力主要集中在脉搏豆类的性能上。野生和栽培的植物豆类在各种栖息地之间在形态上变化。这可能会使它们不那么知名,未被充分利用和不流失,并使它们成为营养不良仍然存在的发展中国家的潜在营养来源。需要进行研究来促进未充分的蔬菜豆类,以改善其未来为不断增长的人群提供的用途。鉴于上述所有要点,我们在这里讨论了具有巨大潜力的植物豆类的植物豆类。也就是说,植物鸽子豌豆(Cajanus cajan),簇豆(cyamopsis tetragonoloba),有翅豆(psophocarpus tetragonolobus),dolichos bean(lablab pulpureus)和牛皮(vigna unguiculata)(vigna unguiculata),从而覆盖各种方面的量子,例如预先标记量的劳动,例如,量身定量的标志(QTL),基因组学和基因工程。总的来说,这篇综述总结了与蔬菜豆类育种进步有关的信息,这些信息最终将有助于确保发展中国家的食品和营养安全。
引言马豆 (Macrotyloma uniflorum (Lam.) Verdc.) 是一种耐寒的半干旱热带豆类作物,对其研究甚少。尽管马豆在印度很大一部分人口的饮食中具有当前和历史重要性,但人们对它存在着根深蒂固的偏见,因为它被认为是穷人的低等食物,尤其是在印度南部 (Kadam 等人,1985 年;Ambasta,1986 年)。对这种作物的科学认识有限,这从教科书中对其地位的描述中可以看出,即使是在其主要生产国印度出版的教科书中也是如此。马豆的研究远少于地位较高的豆类,如印度豇豆 (V. radiata (L.) Wilczek、V. mungo (L.) Hepper) 或木豆 (Cajanus cajan (L.) Millsp)。事实上,虽然印度豇豆属和木豆的野生近缘种都曾接受过专题研究 (Tomooka 等人, . 2014;Khoury 等人 2015;Mallikarjuna 等人 2011)以及与野生近缘种关系的遗传学研究(Aruna 等人 2009;Kassa 等人 2012;Saxena 等人 2014)。直到最近才对马豆进行了小规模的遗传学研究(Sharma 等人 2015)。马豆之所以得名,是因为它几个世纪以来一直被用作马和牛的饲料(Watt 1889-1893),而英国人或地位较高的印度人很少食用它;
在目前的工作中,通过[3+2]氮氧化物与碱的二氧化吡喃唑 - 螺旋螺旋衍生物合成了一系列二氧化吡喃唑 - 螺旋螺旋衍生物,用于合成一系列二甲苯和三替代的吡唑螺旋螺旋衍生物,用于合成一系列二氧化吡喃唑 - 螺旋螺旋衍生物,用于合成一系列碘介导的,无金属的途径。所有合成的氧唑衍生物均以FTIR,1 H NMR,13 C NMR和HRMS数据为特征。通过X射线分析证实了其中一种产品的结构,即乙基-3-(1,3-二苯基-1-4-吡唑-4-基)-5-苯基异恶唑-4-羧酸盐。将所有合成化合物均筛选为抗菌活性,并与标准药物Amoxicillin进行比较。某些化合物表现出与阿莫西林相当或更高的抗菌活性。此外,合成化合物表现出中度至优异的抗氧化活性。针对小鼠成纤维细胞(动物)和植物种子发芽细胞系(Vigna radiata)研究了所有产物的细胞毒性。
摘要:蛋白酶可通过蛋白水解降解或与抑制剂分子结合而失活。蛋白酶抑制剂在自然界中分布广泛,是与蛋白水解酶形成非常稳定的复合物的蛋白质。植物蛋白酶抑制剂是小蛋白质,通常以高浓度存在于储存组织中。在本研究中,结果表明,豆科植物对胰蛋白酶的抑制百分比较高,其中抑制活性最高的是鹰嘴豆 (92.33%),其次是豇豆 (60%)、蚕豆 (52.34%)。在磷酸盐缓冲液 (PB) 中制备的鹰嘴豆粗提取物表现出最大的蛋白酶抑制活性 (79%)。然而,与其他级分相比,发现饱和度为 60-90% (w/v) 的级分能有效沉淀蛋白酶抑制剂。非还原性 SDS-PAGE 中显示一条分子量为 23 KDa 的多肽带。
cow-pea [Vigna unguiculata(L。Walp]]是一种重要的豆类植物作物,其营养谷物,绿色豆荚和新鲜叶子种植,它们富含大量和微量营养素,例如碳水化合物,蛋白质,维生素和矿物质(Badiane等。2004,Carvalho等。 2019,Bai等。 2020,El Masry等。 2021,Silva等。 2021)。 根据Sprent等人的说法。 (2009),将运输用作动物的饲料。 由于蛋白质含量更高,因此被称为“蔬菜肉”(Gopalakrishnan 2007)。 由于农作物的植物较高生长,该区域被完全覆盖,以防止土壤侵蚀。 cow豆具有巨大的潜力作为替代植物作物的干燥土地种植(Choudhary and Yadav 2011,Singh等人。 2022)。 在印度,它在拉贾斯坦邦,北方邦,中央邦,卡纳塔克邦,贾坎德邦,比哈尔邦,2004,Carvalho等。2019,Bai等。 2020,El Masry等。 2021,Silva等。 2021)。 根据Sprent等人的说法。 (2009),将运输用作动物的饲料。 由于蛋白质含量更高,因此被称为“蔬菜肉”(Gopalakrishnan 2007)。 由于农作物的植物较高生长,该区域被完全覆盖,以防止土壤侵蚀。 cow豆具有巨大的潜力作为替代植物作物的干燥土地种植(Choudhary and Yadav 2011,Singh等人。 2022)。 在印度,它在拉贾斯坦邦,北方邦,中央邦,卡纳塔克邦,贾坎德邦,比哈尔邦,2019,Bai等。2020,El Masry等。2021,Silva等。2021)。根据Sprent等人的说法。(2009),将运输用作动物的饲料。由于蛋白质含量更高,因此被称为“蔬菜肉”(Gopalakrishnan 2007)。由于农作物的植物较高生长,该区域被完全覆盖,以防止土壤侵蚀。cow豆具有巨大的潜力作为替代植物作物的干燥土地种植(Choudhary and Yadav 2011,Singh等人。2022)。在印度,它在拉贾斯坦邦,北方邦,中央邦,卡纳塔克邦,贾坎德邦,比哈尔邦,
Alastair Roderick Syme Citigroup Inc.交流研究 - 研究分析师Bertrand Hodee Kepler Chevreux,研究部 - 石油和天然气行业研究部主管Biraj Borkhataria RBC Capital Markets,Research Disecation,研究部 - 欧洲能源研究团队和首席领导人研究部主任Chase&Co,研究部 - 医学博士兼EMEA石油与天然气股权研究研究部负责 Rainforth Barclays Bank PLC, Research Division - Director & Equity Analyst Martijn Rats Morgan Stanley, Research Division - MD and Head of Oil Research Michele Della Vigna Goldman Sachs Group, Inc., Research Division - Co-Head of European Equity Research & MD Oswald C. Clint Sanford C. Bernstein & Co., LLC., Research Division - Senior Research Analyst Paul Cheng Scotiabank Global Banking and Markets, Research Division -分析师Pauline Lecoursonnois-联邦爱马仕(Hermes)的EOS
1 ASI – 意大利航天局,Via del Politecnico snc,00133 罗马,意大利 2 意大利空军,空军总参谋部 – 3 � Department, Viale dell' Università n.4, 00185 Rome, Italy 3 INAF-Astro 天文台 � 都灵 sico, via Osservatorio 20, 10025 Pino托里内塞,都灵,意大利 4 罗马大学 Tor Vergata,物理系,Via Ricerca Scientific ca 1, 00133 罗马,意大利 5 佩鲁贾大学,物理和地质系,Via Pascoli s.n.c.,06124 佩鲁贾,意大利 6 国家地球物理研究所和火山学,Via di Vigna Murata 605, 00143 罗马,意大利 7 特伦托大学物理系,via Sommarive 14, 38123 Trento, Italy 8 INAF-空间天体物理和行星学研究所,Via del Fosso del Cavaliere 100, 00133 罗马,意大利 9 INAF-的里雅斯特天文台,地点巴索维扎 n. 302, 34149 Trieste, Italy 10 INFN-TIFPA, via Sommarive 14, 38123 Trento, Italy