聚合条件:溶剂:水(35毫升),压力:20 bar,发起者:硫酸钾(KPS),表面活性剂:五氟氯辛酸铵酸铵盐(APFO)(启动器浓度为10倍),速度:750 rpm; A来自GPC(DMF,40 O C,PS标准,RI检测器)(ɖ:多分散指数); b来自DSC:加热和冷却周期从30到200 O C,10 O C/min。(T M:熔化温度和T C:结晶温度); C使用以下公式从1 H NMR确定:[ʃ2.92ppm/(ʃ2.92ppm +ʃ2.26ppm)] x 100; d使用以下公式46:f(β)=aβ /(1.3aα +aβ)d ftir d;其中α和Aβ分别对应于763和840 cm -1频段的FTIR光谱中的吸收率; E来自FTIR(CM -1):α763,β840和γ1233。
calix [4]吡咯衍生物通常用于通过非共价相互作用来识别带电的物种或极地客人,但是在文献中,化学测定方法仍然很少。在这项研究中,使用紫外光谱法使用重新定位的β-二氰基替代的钙[4]吡咯传感器,对氢氮的选择性化学测定检测和定量(一种常用于自身使用的有害污染物)。在乙腈中评估了具有各种亲核试剂(含氮化合物和硫醇)的乙腈中化学测定仪对肼的选择性。另外,评估了传感器的几个参数(时间,水含量和温度)对氢津检测的影响。这项研究允许在10-1000 µm范围内传感以1.3 mg/L的检测限(LOD)和线性响应的传感。也已经证明了用肉眼检测氢氮的能力。本文报道了Calix [4]吡咯用于检测和量化中性分子(即氢氮)的第一种化学测定方法之一。简介
本文解决了石蜡矿床的问题,特别关注预防化学方法。在高能油生产中使用的抑制剂的有效性取决于其注入点,因此需要将试剂更深入地放置在“油储层孔”系统中。这项研究的目的是开发一种用于长期蜡抑制的方法,并通过实验评估井操作参数对抑制剂释放速率中生产液的影响。文章概述了一种石蜡抑制技术,该技术涉及将固体多孔颗粒注射到液压裂缝中,该骨折具有双重目的,既可以作为proppant和抑制剂来源。已经开发了一种方法,该方法是用固体乙烯 - 乙酸乙烯酯(EVA)饱和的多孔陶瓷颗粒,该方法在被油洗涤时逐渐释放到油流中,起作用,作为抑郁剂。过滤实验表明,这种抑制方法将抑制剂长期释放到油流中。即使过滤470孔量,通过模型支撑盒过滤的机油样品中的EVA含量仍保持在最小有效浓度水平上。从而减少了旨在防止和去除“石油储层”系统中的石蜡沉积物的干预频率。
摘要。周围空气的湿度一直是聚合物底压接充电的主要因素。在气候测试室对尺寸(110 mm x 110 mm x 110 mm x 4.5 mm)的铝(AL)样品(100 mm x 100 mm x 15 mm x 15 mm x 15 mm x 5 mm x 5 mm)的样品擦除的气候测试室和聚乙烯基氯化物(PV)(PVC)板进行了一项研究。在固定温度(25°C)和三种不同的空气相对湿度(20%,40%和80%)的情况下,将样品至少在气候测试室中至少12小时,然后在三层式充电测试台上一起摩擦。然后将支流PP和PVC样品放在静电探头下,以测量样品表面产生的电势。实验的结果表明,当两个聚合物暴露于低环境湿度时,底环的符号会逆转。
在第三次修订中,删除了 2 级,因为全世界大多只生产一种等级,现有等级的苯乙烯要求修改为 99.7%(质量百分比)。修改了颜色、含量和硫含量的测定方法。此外,还纳入了用于测定相对密度、折射率、凝固点、醛、氯化物、抑制剂含量、聚合物含量和过氧化物的替代试验方法。苯具有致癌性,是苯乙烯中的杂质,委员会决定将苯作为特征,限量为 1 ppm。聚合物溶解度的要求已被删除,因为它已经以杂质的形式计算。
可充电铝电池(RABS)使用刘易斯酸性铝氯化物(ALCL 3)和1-乙基-3-甲基咪唑烷氯化物(EMIMCL)离子液体电解质。电极制造通常依赖于锂离子电池(LIB)的程序,包括使用聚乙烯二氟化物(PVDF)作为粘合剂。但是,PVDF在RAB电解质中与Al 2 Cl 7-反应,使其不适合新电池类型。文献缺乏有关形成的产品的细节,离子液体电解质的变化以及对电化学性能的影响。在2025年对欧洲化学机构对人类和聚氟烷基物质(PFA)的限制(PFAS)限制为替代性粘合剂。与ALCL 3:EMIMCL(1.50:1.00)电解质,PVDF和PVDC分别在脱氢液化和脱氢氯化过程中转化为无定形碳,如Raman光谱所证实的。此外,通过19 F-NMR,可以证明浸泡聚合物和离子液体之间的反应时间对新形成的新形成的铝氯化铝合症复合物具有显着影响。基于石墨的电极的电化学测试表明,与PVDC相比,PVDF的特定能力增加,并连续数量的周期数。无定形碳可以防止石墨瓦解并增强电导率。此外,新形成的ALF 4-可以运行共同介入并导致特定能力的增加。©2024作者。由IOP Publishing Limited代表电化学学会出版。[doi:10.1149/1945-7111/ad8a93]这是根据Creative Commons Attribution 4.0许可(CC by,https://creativecommons.org/licenses/by/4.0/)分发的开放访问文章,如果原始作品被适当地引用了任何媒介,则可以在任何媒介中不受限制地重复使用工作。
CPVC或氯化聚氯乙烯氯化物与PVC(聚氯化氯)相比,其氯含量增加了约66%,具有优越的热稳定性。但是,超过其温度限制会导致降解且难以处理。考虑CPVC是PVC通过氯化的进一步乘积,可以通过PVC推测CPVC的反应机理。尽管CPVC是PVC的导数,但它是一个复杂的系统。聚合物分子结构中至少存在三种不同类型的重复单元:-CH2-CHCL-, - CHCL-CHCL-和少量的-CCL2-单元(10)CPVC是重要的特种聚合物,这是由于其高玻璃过渡,高热偏移温度,杰出的火焰和烟雾和化学效果。虽然CPVC的玻璃过渡温度通常随着氯的量增加而升高,但氯含量的增加会导致CPVC变得更加困难
聚氯乙烯的顽固性在生产和处置过程中引起了重大环境挑战。这项研究旨在评估从塑料生产工厂中的洗涤池分离到生物降解聚氯化物(PVC)的真菌的能力。在60天内,将隔离的真菌与Bushnell Haas培养基中的塑料一起孵育。这些菌株被鉴定为Coriolopsis gallica(F1),尼日尔曲霉(F2)和曲霉(F3)。孵育后,选择了三种方法:傅立叶变换红外(FTIR)分析,气相色谱 - 质谱(GC-MS)和减肥实验,以确定PVC的生物降解。与对照相比,FTIR分析表明峰变化,消失和形成了已处理的PVC的新键。GC-MS分析揭示了PVC分解过程中羧酸,酒精,硝酸盐和新化合物的形成。微生物菌株F1,F2,F3和真菌联盟(FC)的减肥实验的结果分别为19、25.3、23.6和52.6%。FC是通过组合所有三种真菌分离株来制备的。本研究得出的结论是,这些孤立的真菌菌株具有PVC塑料部分生物降解的潜力。尽管如此,结果表明真菌财团在PVC在水性环境中的降解中起着重要作用。
1石油与化学工业的生物质基于生物质的材料,化学工程学院,化学与药房,化学与环境工程学院,武汉理工学院,武汉430205,中国; Little_ben2002@163.com(X.Y。); Hezhenwork@126.com(Z.H.); 17371087162@163.com(L.J.); 18154351008@163.com(H.C.)2材料与环境工程系,成都技术大学,成都611730,中国3湖转换式煤炭转换和新碳材料的主要实验室,化学与化学工程学院,武汉科学与技术大学,乌汉尼大学430081,中国武汉大学,武汉大学430081,中国; wuling2018@wust.edu.cn 4高级材料教育部材料科学与工程学院的主要实验室,中国北京100084,北京大学; zhhuang@tsinghua.edu.cn *通信:lqlxp10@163.com(q.l.); wangmx14@wit.edu.cn(M.W。);电话。: +86-27-87195680(M.W。)
这项研究探讨了将桉树素提取物(ELE)作为一种创新的伤口敷料策略,以解决抗生素耐药性的威胁及其相关并发症在伤口细菌感染中的并发症。该研究基于对药用植物固有的抗菌特性以及纳米材料的有利释放特性的识别,尤其是纳米材料的有利释放特性,尤其是电纺纳米纤维,这些纳米纤维紧密模仿细胞外基质。利用静电纺丝技术,用羟基甲藻素提取物制造纳米纤维垫,使用扫描电子显微镜(SEM),傅立叶 - 转换基础(FTIR)(FTIR)光泽性(FTIR)光泽性(x-ray diffraction(xrd)(xrd),使用扫描电子显微镜(SEM),其结构和形态属性进行了全面表征。该研究采用60只雄性Wistar大鼠,将其分为PVA/ELE,硝基呋喃酮,正常盐水和PVA伤口敷料的组。微生物和组织病理学分析是在感染后特定的间隔进行的。结果揭示了PVA/ELE的显着抗菌功效,与对照组相比,细菌计数的大幅度降低证明了这一点。此外,PVA/ELE组表现出优质的伤口尺寸减小,上皮化和胶原蛋白沉积,类似于硝基呋喃酮组观察到的影响。这些发现表明PVA/ELE具有明显的抗菌潜力,并促进了先进的伤口治疗过程。因此,这种富含Ele的电纺纳米纤维配方是传统伤口护理的一种有希望且可行的替代方案,在打击细菌感染和促进伤口愈合方面具有多方面的益处。