准确及时地诊断植物病毒感染对有效控制疾病和维持农业生产力起着关键作用。植物病毒诊断的最新进展大大扩展了我们检测和监测农作物病毒病原体的能力。本综述讨论了诊断技术的最新进展,包括传统方法和最新创新。酶联免疫吸附测定和基于 DNA 扩增的测定等传统方法由于其可靠性和准确性而仍然被广泛使用。然而,下一代测序和基于 CRISPR 的检测等诊断技术提供了更快、更灵敏和更具体的病毒检测。本综述强调了用于植物病毒诊断的检测系统的主要优势和局限性,包括传统方法、生物传感器技术和先进的基于序列的技术。此外,它还讨论了市售诊断工具的有效性和现代诊断技术面临的挑战,以及改进明智疾病管理策略的未来方向。了解现有诊断方法的主要特征将使利益相关者能够选择最佳的病毒威胁管理策略并确保全球粮食安全。
1 瑞士圣加仑州立医院,传染病和医院流行病学分部;2 瑞士东部儿童医院,传染病和医院流行病学部,瑞士圣加仑;3 瑞士库尔格劳宾登州立医院,传染病分部;4 瑞士圣加仑州(南部)精神病服务中心;5 瑞士圣加仑州(北部)精神病服务中心;6 Clienia Littenheid,瑞士利滕海德;7 瑞士齐尔施拉赫特神经康复中心;8 瑞士格拉布斯 Rheintal Werdenberg Sarganserland 医院集团;9 瑞士维尔 Fuerstenland Toggenburg 医院集团;10 瑞士苏黎世 Hirslanden 诊所; 11 瑞士明斯特林根图尔高医院集团传染病和医院流行病学部;12 瑞士国家感染预防中心 (Swissnoso),瑞士伯尔尼;13 瑞士圣加仑老年诊所,瑞士圣加仑;14 加拿大多伦多西奈医疗系统;15 瑞士布克斯 Labormedizinisches Zentrum Dr Risch Ostschweiz AG;16 列支敦士登私立大学,特里森, ———————————————————————————————————————————— *SPK 和 PK 对本文的贡献相同。 **研究组团队成员列于致谢部分 通讯作者。 Philipp Kohler,医学博士,理学硕士,圣加仑州立医院,传染病和医院流行病学科,Rorschacherstrasse 95,9007 St. Gallen,瑞士,电子邮件 philipp.kohler@kssg.ch © 作者 2023。由牛津大学出版社代表美国传染病学会出版。这是一篇开放获取文章,根据知识共享署名-非商业-禁止演绎许可条款分发(https://creativecommons.org/licenses/by-nc-nd/4.0/),允许以任何媒介非商业性复制和分发作品,前提是原始作品未以任何方式更改或转换,并且正确引用作品。如需商业再利用,请联系 journals.permissions@oup.com
结果:对95种病毒物种(包括72种RNA病毒物种和23种DNA病毒物种)共收集了2,847种病毒疫苗,手动注释并存储在小提琴疫苗数据库中。这些病毒疫苗使用了542疫苗抗原。分类学分析发现病毒疫苗涵盖的各种DNA和RNA病毒。这些疫苗针对不同的人,动物疫苗和HPV疫苗,以不同的病毒生命周期阶段(例如,病毒进入,组装,出口和免疫逃避)为目标。疫苗抗原蛋白也显示在病毒(例如HRSV疫苗)的不同病毒素位置。结构性和非结构性病毒蛋白已用于病毒疫苗的发育。根据Vaxign-ML计算,保护性疫苗抗原的蛋白质得分> 85%,该计算衡量了预测疫苗使用的适用性。虽然预测的粘合剂仍然具有保护性抗原的明显更高的机会,但只有21.42%的保护性病毒疫苗抗原被预测为粘附素。此外,我们的基因本体论(GO)富集分析使用定制的Fisher的精确测试确定了许多富集的模式,例如病毒进入宿主细胞,DNA/RNA/ATP/ION结合,并抑制宿主1类Interferon介导的信号介导的信号传导途径。病毒疫苗及其相关的实体和关系在疫苗本体论(VO)中是本体论建模和代表的。开发了小提琴Web界面,以支持病毒疫苗的用户友好查询。
中东呼吸道综合征冠状病毒(MERS-COV)感染会导致人类致命的肺部炎症性疾病。相反,骆驼和蝙蝠是主要的储层宿主,耐受的MERS-COV复制而不患有临床疾病。在这里,我们从MERS-COV康复的骆驼中分离了宫颈淋巴结(LN)细胞,并用两种不同的病毒菌株(进化枝B和C)脉冲它们。病毒复制,但安装了细胞免疫反应。让人联想的Th1反应(IFN-G,IL-2,IL-12),并伴随着抗病毒反应的明显且短暂的峰值(I型IFNS,IFNS,IFN-L 3,ISGS,ISGS,PRRS和TFS)。重要的是,炎症细胞因子(TNF-A,IL-1 B,IL-6,IL-8)的表达或膨胀成分(NLRP3,CASP1,Pycard)的表达被抑制。讨论了IFN-L 3在骆驼物种中对平衡量弹性过程以及桥接先天和适应性免疫反应的作用。我们的发现阐明了有关在没有临床疾病的情况下如何控制MERS-COV的关键机制。
严重的急性呼吸道综合征冠状病毒2(SARS-COV-2)大流行已经大大加快了病毒感染和疫苗接种研究的进展。直到2021年11月,有四种SARS-COV-2疫苗已在欧盟获得营销授权,其中两种是基于mRNA的,两个基于病毒矢量技术。多项研究表明,关于预防SARS-COV-2有症状感染和严重的冠状病毒病2019(COVID-19)疾病疗法的mRNA和病毒载体疫苗的良好效率(1-7)。免疫分析提供了针对SARS-COV-2的体液和T细胞反应的证据(8-18)。然而,进一步的研究表明,在某些亚群中,尤其是在因自身免疫性疾病或癌症引起的免疫抑制疗法的患者中,对SARS-COV-2疫苗接种的免疫反应减少甚至缺乏免疫学反应。不幸的是,由于免疫疗法,同一患者有严重的Covid-19疾病病程的风险。免疫抑制治疗用于多发性硬化症(PWMS)的人进行疾病改良。已显示两类MS药物会损害对mRNA和病毒载体疫苗接种的免疫反应。首先,已显示出可预防淋巴结淋巴结淋巴细胞的链球菌1-磷酸受体(S1PR)调节剂,已被证明会损害对SARS-COV-2疫苗接种的体液和T细胞反应(19-21)。第二,单克隆抗CD20抗体的治疗有限的患者能够对SARS-COV-2疫苗进行足够的体液反应能力(22-27)。2021年12月,基于蛋白质的SARS-COV-2疫苗NVX-COV2373在欧盟获得了有条件的营销授权。我们旨在澄清NVX-COV2373是否可以诱导SARS-COV-2特定t-和
引用Kalpoe,J。S.(2007年,6月28日)。量子病毒学:通过定量测量改善病毒感染的治疗。从https://hdl.handle.net/1887/12100
摘要到目前为止,已经进行了许多分析,以发明严重急性呼吸综合征冠状病毒2(SARS -COV -2)的适当治疗靶标。在本综述中描述了治疗病毒的类别和策略,并提及一些特定的药物。,saikosaponin具有对非结构蛋白15和SARS -COV -2的尖峰糖蛋白的亲和力。The nucleotide inhibitors such as sofosbuvir, ribavirin, galidesivir, remdesivir, favipiravir, cefuroxime, tenofovir, and hydroxychloroquine (HCHL), setrobuvir, YAK, and IDX‑184 were found to be effective in binding to SARS‑CoV‑2 RNA‑dependent RNA polymerase.来自抗疟疾和抗炎类别,氯喹及其衍生物HCHL已经获得了美国食品和药物管理局的批准,用于紧急治疗SARS -COV -COV -COV -2感染。其他药物,例如抗病毒类别下的favipiravir和lopinavir/ritonavir,血管紧张素转化的酶2(肾素 - 血管紧张素系统抑制剂),remdesivir(remdesivir),rna Polymerase抑制剂(RNA Polymerase抑制剂)的基于抗体类别的抗病毒症,抗抗病毒症,是抗病毒剂,是抗病毒症,是抗生物学的,文学发表。此外,用相关靶标对药物重新定位候选者的评估对于病毒缓解也很重要。
Analyt(测量尺寸)考试材料(矩阵)调查技术教学/版本(测量)设备/设备CE程序在用于使用的房屋方法中,因为DIN EN ISO 15189 DIN EN EN ISO/IEC 17025
基于基因组结构和复制策略的相似性,RNA病毒如今可分为“超类群”,通常涵盖动物病毒和植物病毒(Goldbach & Wellink,1988;Strauss & Strauss,1988)。这一概念也越来越多地体现在病毒分类学中;尤其是引入了分类单元“目”,将很可能拥有共同祖先的病毒科合并在一起(Mayo & Pringle,1998)。对于正链、有包膜的冠状病毒和动脉炎病毒(最近被统一归入巢病毒目,Cavanagh,1997),基于相似的多顺反子基因组结构、共同的转录和(后)翻译策略以及一系列同源复制酶结构域的保守性(den Boon et al.,1991),它们之间建立了密切的系统发育关系。因此,有可能勾勒出nidovirus生命周期的共同轮廓(图1)(详见Lai & Cavanagh,1997;de Vries et al.,1997;Snijder & Meulenberg,1998)。然而,在某些方面,这两个病毒家族彼此之间存在显著差异。例如,最大的冠状病毒基因组,鼠肝炎病毒(MHV),其基因组为31±5kb,约为最小动脉炎病毒基因组,即马动脉炎病毒(EAV)12±7kb RNA的两倍半。此外,这两个病毒家族的结构蛋白没有明显的相关性,导致病毒体的大小和结构存在重要差异(den Boon et al.,1991;Snijder & Spaan,1995;de Vries et al.,1997)。大多数主要的动物正链RNA病毒群体要么产生单个多聚蛋白,要么产生单独的非结构和结构前体多肽,这些多肽随后被病毒编码或宿主编码的蛋白酶裂解,产生功能性亚基(Dougherty & Semler, 1993)。相比之下,在基因组3′-近端区域编码的nido病毒结构蛋白,
蓝图(BT)是一种传染性的,非传染性的,无染色的,出血性疾病的家庭和野生反刍动物,与绵羊特别严重的临床疾病有关。临床体征通常包括面部水肿,呼吸困难,结膜炎,发烧,出血,冠状炎和la行(1)。BT的致病药物是节肢动物传播的病原体Bluetongue病毒(BTV),该病毒是通过易感的Culicoides在其哺乳动物宿主之间生物学传播的,易感性库里科德斯咬着ceratopogogonidae家族的中心(2)。BTV是Orbivirus属(家族:Sedoreoviridae)的类型,由10个段的双链RNA组成,编码了7个结构性(VP1 - 7)和至少4种非结构性(NS1 - NS4)蛋白质。目前至少有29个公认的BTV血清型(3)。在过去的二十年中,北欧大部分地区的BTV已多次侵入(4,5),这造成了其实质性的全球经济负担(6-8)。作为对牲畜生产和粮食安全的重要而持续的全球威胁,BT是世界动物健康组织的疑问。体液免疫被认为是反刍动物中BTV感染的主要驱动力。中和抗体,主要针对BTV外带封底蛋白VP2升高,可保护与同源血清型的菌株(9-11)的重新感染。t细胞一直是对BTV感染的先天和适应性免疫反应的主要研究目标(17,18),尤其是在探索跨色谱免疫保护时。短暂的,部分保护异源BTV血清型的菌株(12、13),但通常在没有中和抗体的情况下(14-16),从而表明在发挥作用的其他机制。CD8 +细胞毒性T细胞表现出针对异源BTV血清型(19,20)的交叉反应性,并赋予了针对BTV的绵羊中的某些部分跨色谱保护(14、21、22)。此外,CD4 +和CD8 + T细胞都被证明可以识别结构(VP2和VP7)和非结构性BTV蛋白(NS1)(19,23 - 26)的表位。绵羊的BTV感染的特征是急性免疫抑制,这被认为可以通过逃避宿主免疫反应来促进其特征性的长时间病毒血症(27)。已经确定了T细胞动力学的特定变化,包括