脊索痘病毒具有上皮嗜性,通常会引起皮肤病变。感染范围从轻微的局部皮肤病变到严重的全身性疾病,如天花。虽然许多痘病毒感染会自行消退,但严重病例或免疫功能低下者的感染可能需要抗病毒治疗 [1]。西多福韦是一种核苷类似物,获批用于治疗巨细胞病毒性视网膜炎,已显示出对痘病毒有一定疗效。然而,由于肾毒性,其治疗用途有限,这凸显了对新型抗病毒策略的需求。L1 蛋白是痘病毒包膜的保守成分,是抗病毒干预的一个有希望的靶点。其疏水腔在病毒体组装中起着至关重要的作用,可以通过抗体疗法或疫苗开发来靶向 [1]。
摘要温带和规范的裂解噬菌体在葡萄球菌的生物学中具有至关重要的作用。虽然密切相关的温带噬菌体之间的超级感染排除是一种良好的现象,但尚不清楚葡萄球菌中温带和裂解噬菌体之间的相互作用。在这里,我们提出了一种朝向kayvirus属的裂解噬菌体的抗性机制,由膜锚定的蛋白质指定的PDP SAU介导,由金黄色葡萄球菌预言编码,主要是SA2整合酶类型。预言辅助基因PDP SAU与霍林和AMI2型胺酶的裂解基因密切相关,通常取代毒素Panton-valentine白细胞素(PVL)的基因。预测的PDP SAU蛋白结构显示了其N末端部分中存在膜结合的A-螺旋和细胞质正电荷C末端。我们表明,PDP SAU的作用机理并不能阻止感染Kayvirus吸附到宿主细胞上并将其基因组传递到细胞中,但噬菌体DNA复制已停止。从感染后10分钟开始观察到细胞膜极性的变化和渗透率,从而导致预言激活的细胞死亡。此外,我们描述了一种在宿主范围的kayvirus突变体中克服这种抗性的机制,该抗病毒突变体是在带有预言的金黄色葡萄球菌菌株上选择的53个编码PDP SAU的菌株,其中嵌合基因产物通过适应性实验室进化而出现。这是葡萄球菌间噬菌体 - 噬菌体竞争的第一种情况类似于其他一些流产感染防御系统和基于膜破坏性蛋白的系统。
摘要:共同19号死亡人数已达到700万,其中4%的死亡发生在儿童和青少年中。在巴西,大约有1500名11岁的儿童死于该疾病。儿童中最常见的症状是呼吸道,可能发展为严重疾病,例如严重的急性呼吸综合症(SARS)和MIS-C。研究表明,合并症和遗传因素,例如免疫反应基因中的多态性,可能会影响COVID-19的严重程度。这项研究研究了COVID-19患者先天免疫反应基因中单核苷酸多态性(SNP)的发生。从13岁以下的儿童中分析了七十三个样本,该儿童在Covid-19,在Jo-O Paulo II儿童医院住院。评估的SNP为TLR8(1)(rs3764879),TLR8(2)(RS2407992),TLR7(RS179008),TLR3(RS3775291),TIRAP(tirap),TIRAP(RS8177374)和MC MCP-1(RS8177374)和MCP-1(rs8177374)和102466666666666666(RS)(RS)中度,严重和关键的共同19岁。识别SNP,PCR和测序。与全球ALFA,全球1000个基因组,全局GNOMAD,American 1000基因组和美国GNOMAD数据库中描述的频率相比,获得的SNP的频率并不差异,除了TLR7中的SNP。将严重和关键病例与轻度和中度病例进行比较,我们发现与TLR8(1),TLR7,TLR3和TIRAP中突变有关的相对风险更高(P <0.05)。在TLR8(2)和MCP-1中没有发现SNP的关联。我们的分析表明,SNP与先天免疫反应基因中的相关性与COVID-19(或SARS-COV-2感染儿童)的症状严重程度之间的关系。
与大多数生物体一样,植物也具备复杂而精巧的分子机制来应对不断变化的环境。在翻译后修饰 (PTM) 中,小肽(如泛素或 SUMO(小泛素相关修饰物))的结合能够快速有效地适应各种非生物和生物胁迫条件。SUMO 化过程涉及使用类似于泛素化的分级多酶级联将 SUMO 共价附着到目标蛋白上(图 1)[ 1 ]。这种可逆修饰可导致构象变化、改变蛋白质相互作用并影响修饰蛋白质的整体功能,包括稳定性、亚细胞定位和转录调控。除了与目标蛋白结合之外,SUMO 还能够与许多含有 SUMO 相互作用基序 (SIM) 的蛋白质非共价相互作用。将相同或不同蛋白质中的 SUMO 化位点与 SIM 相结合,有助于形成蛋白质宏观结构,从而通过将其他 SUMO 靶标募集到有利于 SUMO 化的环境中来增强 SUMO 化 [1]。拟南芥基因组含有 8 个 SUMO 基因,但只有 4 个得到表达(AtSUMO1/2/3/5)。几乎相同的 AtSUMO1/2 是 SUMO 原型,因为它们是哺乳动物 SUMO2/3 的最近同源物。SUMO 蛋白在发育和防御过程中的时空表达和功能有所不同 [2]。植物通常表达高水平的高度保守的 SUMO 异构体(AtSUMO1/2)和至少一种弱表达的非保守异构体(AtSUMO3/5)。
甲型流感病毒(H3N2)鸡胚衍生 1 候选疫苗病毒,用于开发和生产 2025 年南半球流感季节使用的疫苗 抗原和基因分析由世卫组织全球流感监测和应对系统 (GISRS) 合作中心进行。除非另有说明,本表上公布的所有候选疫苗病毒均已通过双向血凝抑制 (HI) 试验。国家或地区控制机构批准每个国家使用的疫苗的成分和配方 2
。CC-BY 4.0 国际许可(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2025 年 1 月 1 日发布。;https://doi.org/10.1101/2024.12.31.630865 doi:bioRxiv 预印本
甲型流感病毒(H3N2)鸡胚衍生 1 候选疫苗病毒,用于开发和生产 2025 年南半球流感季节使用的疫苗 抗原和基因分析由世卫组织全球流感监测和应对系统 (GISRS) 合作中心进行。除非另有说明,本表上公布的所有候选疫苗病毒均已通过双向血凝抑制 (HI) 试验。国家或地区控制机构批准每个国家使用的疫苗的成分和配方 2
摘要:疱疹病毒是长期以来用作强大基因治疗工具的大型DNA病毒。近年来,疱疹病毒刺激先天和适应性免疫反应的能力已导致它们过渡到各种疫苗媒介的应用。该疫苗学分支正在以前所未有的加速速度生长。迄今为止,基于人疱疹病毒的载体已被用于疫苗中,以对抗各种传染病,包括埃博拉病毒,脚和口腔疾病病毒以及人类免疫效率病毒。此外,这些载体正在作为癌症相关抗原的潜在疫苗进行测试。多亏了重组DNA技术,免疫学和基因组学的进步,疫苗开发方面的许多步骤得到了极大的改善。对疱疹病毒生物学以及这些病毒与宿主细胞之间的相互作用的更好理解无疑将促进基于疱疹病毒的疫苗媒介在临床环境中的使用。要克服这些向量的现有缺点,需要进行持续的研究,以进一步促进我们对疱疹病毒生物学的了解并发展更安全,更有效的疫苗媒介。必须使用晚期分子病毒学和细胞生物学技术来更好地了解疱疹病毒操纵宿主细胞的机制以及在感染过程中如何调节病毒基因表达。在这篇综述中,我们涵盖了疱疹病毒的潜在分子结构,以及用于设计其基因组的策略,以优化能力和效率为疫苗向量。此外,我们还评估了有关基于疱疹病毒的疫苗成功应用的可用数据,以打击病毒感染等疾病,以及潜在的缺点和替代方法来掩盖它们。
摘要:腺相关病毒(AAV)在临床试验中被广泛用作体内基因治疗的递送向量,因为它们的独特特征。GöttingenMinipigs是多种疾病的良好动物模型,可用于基于AAV的基因疗法的功效和安全性测试。针对AAV的预先存在的抗体可能会影响测试结果,因此,应测试动物的抗体,以抗相关的AAV血清型。猪中AAV的检测对于异种移植的病毒安全性也可能很重要。在这项研究中,我们筛选了来自EllegaardGöttingenMinipigs A/S,Denmark和Marshall Bioresources的GöttingenMinipigs,用于针对AAV1,AAV1,AAV2,AAV6,AAV6,AAV9,AAV9 Serotypes的抗体。对所有测试的AAV没有中和抗体,没有一个针对AAV9的抗体,只有一种对AAV6具有抗体,针对AAV1和AAV2的抗体滴定剂量小于1:100,有两个除外。对于总结合IgG,越来越多的个体对所有测试的血清型都表现出阳性,但通常,水平较低或零。三只动物完全没有针对测试的AAV的抗体。因此,哥廷根小杂志可以被认为是用于基因治疗研究的有吸引力的动物模型。由于某些动物对所有测试的AAV均为阴性,因此可以选择并用作异种移植的供体动物。
只有一克人的便便,有超过1000亿个细菌和最多1万亿个噬菌体!这意味着古代人类便便样品非常适合查找噬菌体DNA。我们选择了30个古老的便便样品。我们选择的最古老的样本来自5300年的冷冻木乃伊,名为ÖtziiCeman。我们还使用了来自世界各地的古代人类的大便,包括美国,墨西哥和奥地利(图1)。猜猜是什么?我们不必自己收集任何样本,因为它们以前是由不同小组研究的。我们只是回收了他们的数据!