冠状病毒 (CoV) 是 RNA 病毒中基因组最大的病毒,在细胞质中复制时无需整合基因组即可存储大量信息。病毒的复制是一个连续的过程,而亚基因组 mRNA 的转录是一个不连续的过程,涉及模板转换,这类似于高频重组机制,可能有利于病毒基因组的变异。三种致命的人类冠状病毒 SARS-CoV、MERS-CoV 和 SARS-CoV-2 的起源是人畜共患事件。SARS-CoV-2 在其刺突蛋白中整合了一个呋喃蛋白酶水解位点,这有助于病毒在任何组织中被激活,使这种冠状病毒株具有高度的多变性和致病性。以 MERS-CoV 为模型,通过去除 E 蛋白基因(病毒形态形成所必需的基因,与毒力有关)和附属基因 3、4a、4b 和 5(负责拮抗先天免疫反应)来减毒病毒,从而生成了增殖缺陷型 RNA 复制子:MERS-CoV- Δ [3、4a、4b、5、E]。这种 RNA 复制子被强烈减毒,在用 MERS-CoV 受体转基因小鼠进行一次免疫后即可产生杀菌保护,使其成为该病毒的有希望的疫苗候选物,也是基于载体的疫苗开发的有趣平台。可以制定一种策略来设计针对其他人类致病冠状病毒的 RNA 复制子疫苗。
冠状病毒(COVS)的暴发,尤其是严重的急性呼吸综合症冠状病毒2(SARS-COV-2),对人类和动物构成了严重的威胁,这些威胁紧急呼吁有效的广谱抗病毒药。RNA依赖性RNA聚合酶(RDRP)在病毒RNA合成中起着至关重要的作用,并且是理想的泛环病毒治疗靶标。基于冷冻电子显微镜和生化方法,gossypol(GOS)从881种天然产物中鉴定出直接阻断SARS-COV-2 RDRP,从而抑制细胞和小鼠感染模型中的SARS-COV-2复制。gos还充当了对SARS-COV-2变体(VOC)的有效抑制剂(VOC),并具有与原始SARS-COV-2的RDRP相同的抑制作用,对voc的突变RDRP的抑制作用相同。此外,RDRP抑制剂GO具有针对字母内病毒(猪流行性腹泻病毒和猪急性腹泻综合征冠状动脉索病毒)的宽光谱抗癌病毒活性显示了三核纳病毒(猪三核纳维病毒)。发现的发现表明,GO可以作为打击正在进行的COVID-19-19大流行和其他冠状病毒疫情的有前途的铅化合物。
抽象的Mitoviruses(Mitoviridae家族)是在真菌和植物的线粒体中代表的小无衣壳RNA病毒。迄今为止,唯一的真实的动物米托病毒被鉴定为Lutzomyia longipalpis mitovirus 1(Lulmv1)。来自几种动物的转录组研究的公共数据库可能是识别经常错过的Mitovires的好来源。因此,在NCBI转录组shot弹枪组装(TSA)库中搜索类似于Mitovirus的转录本,以及对先前在NCBI非冗余(NR)蛋白质序列库中记录的Mito-病毒的搜索,以识别与动物相关的类似Mitovirus序列。在TSA数据库中总共确定了10个新的推定中病毒,在NR Pro-te-te-te-Te-Te-Teperin数据库中总共确定了5个推定的Mitovires。据我们所知,这些结果代表了与Poriferan,Cnidarians,echinoderms,Crustaceans,Myriapods和Arachnids相关的推定线病毒的第一个证据。根据使用最大似然法的不同系统发育推论,这18种推定的线索病毒与LULMV1(唯一已知的动物感染线虫病毒)形成了强大的单系谱系。基于计算机程序中的这些发现,证明了与动物相关的一系列推定的mitovirus的有力证据,这些枝条被临时命名为“ kvinmitovirus”。
此预印本的版权所有者此版本于 2022 年 8 月 22 日发布。;https://doi.org/10.1101/2022.05.24.493068 doi:bioRxiv preprint
关键词:轨道式振荡生物反应器 (OSB)、禽类 AGE1.CR.pIX 悬浮细胞、流感病毒、动物疱疹病毒、腺相关病毒 (AAV)、人胚胎肾 (HEK) 293 细胞、一次性灌注至高细胞密度、制造。悬浮细胞的预培养在摇瓶中成功完成。特别是新开发的设计细胞在高摇动频率下在摇瓶中传代多达 100 次,然后完美适应在具有 pH 控制和最大氧气供应(通常高于 80% pO 2 )的 CO 2 培养箱中生长。当它们随后被转移到搅拌槽生物反应器进行扩大时,特定细胞生长率通常较低,并且细胞对通过酸/碱添加和由于潜水器放气(气泡)而产生的剪切应力的 pH 控制变得敏感。禽类 AGE1.CR.pIX 和人类 HEK 293 细胞也出现了这种情况。为了避免这些问题,评估了在振荡模式下的扩大规模。这里我们介绍了 SB10-X OSB 生物反应器在袋子设计和控制单元改进方面的最新进展。引入了一种新的控制策略,从而可以更快、更精确地控制 pH 和 DO。此外,还优化了灌注袋,以便可以轻松连接一个或两个 TFF ATF 系统。这两项发展都带来了更强大的 SB10-X 系统,可以轻松执行批量、补料分批或灌注运行。在 10 L 一次性标准袋中,在化学定义的培养基 CD-U3(Biochrom-Merck,德国)中以 70 rpm 的摇动频率培养 Avian AGE1.CR.pIX 细胞(ProBioGen AG,德国)。对于灌注,使用了交替切向流系统(ATF2,Repligen,500 kDa 截止值)。感染流感病毒 A/PR/8/34 (H1N1) 后,MOI 为 0.001,工作体积从 5 升增加到 9 升,同时保持灌注。使用不同的填充体积评估 25 和 50 x 10 6 细胞/毫升的细胞浓度,以了解顶部空间通气的影响。总体而言,可以获得 3500 个病毒体/细胞的非常高的细胞特异性病毒产量,导致 HA 滴度高达 3.7 log 10(HA 单位/100 µL),感染滴度高达 8.8 x 10 9 TCID 50 /毫升。基于重组 AAV 的载体不仅是基因治疗目的的合适载体,而且还能够诱导针对各种抗原的强烈、主要是细胞的免疫反应。到目前为止,AAV 生产主要使用瞬时转染的贴壁人类 HEK 293 细胞(例如在细胞堆栈中),这对大规模 AAV 生产来说是一个重大挑战。在这里,我们测试了内部适应悬浮生长的 HEK 293 细胞,以通过一种允许简单扩大规模的过程生产 AAV9 的能力。因此,HEK 293 悬浮细胞在 5 L 化学定义的无血清培养基中培养,细胞密度为 1 x 10 6 个细胞/毫升,使用 SB10-X OSB 生物反应器,摇动频率为 65 rpm。24 小时后以 70 rpm 的振荡频率进行聚乙烯亚胺 (PEI) 介导的三重转染(包括 GFP 报告基因)。最后,转染后 48 小时,收获细胞和上清液进行 AAV 分离,并测定裂解物中 DNase I 抗性载体颗粒 (DRP) 的数量。由于转染效率高(基于 GFP 报告基因的转染率 >90%)且 SB10-X 系统中整个批处理过程性能良好,因此达到了 1.4 x 10 12 DRP/ml 或 7 x 10 15 DRP/批(5 L)范围内的制造相关 AAV 滴度。总之,在轨道上生产病毒可能是创新疫苗制造的一种有吸引力的替代方案。
抽象的肿瘤细胞操纵其生长的局部环境,形成促进肿瘤生存和转移的肿瘤微环境(TME)。TME是一个富含免疫抑制细胞和细胞因子的极其复杂的环境。在治疗上靶向复杂的TME的各种方法正在成为癌症治疗的潜在方法。溶瘤病毒(OVS)是将TME重塑为抗肿瘤环境的最有前途的方法之一,可以单独使用或与其他免疫疗法选择结合使用。ovs在肿瘤细胞中特异性复制,可以在遗传上设计以同时靶向TME的多个元素,从而代表了一种治疗性,具有改变TME以促进抗肿瘤免疫细胞激活并克服肿瘤耐药性耐药性和复发性和复发性。在这篇综述中,我们分析了OVS对肿瘤细胞的最向向主义,并详细探讨了OVS与免疫细胞,肿瘤基质,脉管系统和代谢环境之间的相互作用,以帮助了解OVS如何成为我们长期治愈疗法的最有希望的前景之一。我们还讨论了与TME疗法相关的一些挑战,以及这个不断发展的领域的未来观点。
1德国汉诺威汉诺威医学院病毒学研究所; 2抵抗 - 卓越群,德国汉诺威汉诺威医学院; 3德国慕尼黑慕尼黑技术大学病毒学研究所; 4德国弗莱堡大学弗莱堡大学医学中心病毒学研究所; 5美国普林斯顿大学普林斯顿大学分子生物学系; 6 MRC人类免疫学部门,MRC Weatherall分子医学研究所,Radcliffe医学系,牛津大学,牛津大学,英国; 7德国汉诺威 - 布劳恩斯乔格合作伙伴网站德国感染研究中心(DZIF),德国汉诺威; 8德国汉诺威汉诺威医学院的研究核心单位激光显微镜; 9德国慕尼黑的德国感染研究中心(DZIF),德国慕尼黑1德国汉诺威汉诺威医学院病毒学研究所; 2抵抗 - 卓越群,德国汉诺威汉诺威医学院; 3德国慕尼黑慕尼黑技术大学病毒学研究所; 4德国弗莱堡大学弗莱堡大学医学中心病毒学研究所; 5美国普林斯顿大学普林斯顿大学分子生物学系; 6 MRC人类免疫学部门,MRC Weatherall分子医学研究所,Radcliffe医学系,牛津大学,牛津大学,英国; 7德国汉诺威 - 布劳恩斯乔格合作伙伴网站德国感染研究中心(DZIF),德国汉诺威; 8德国汉诺威汉诺威医学院的研究核心单位激光显微镜; 9德国慕尼黑的德国感染研究中心(DZIF),德国慕尼黑
本预印本的版权所有者(此版本于 2022 年 5 月 24 日发布。;https://doi.org/10.1101/2022.05.24.493068 doi:bioRxiv preprint
摘要。Mimivivus是一种巨型病毒,可感染变形虫,长期以来由于其大小而被认为是细菌。病毒颗粒由直径约500 nm的蛋白质衣帽组成,该蛋白质的直径封闭在多糖层中,其中约有120-140 nm长的纤维嵌入,总直径为700 nm。该病毒的基因组大小为1.2 Mb DNA,令人惊讶的是,仅在不进入细胞核的情况下在感染细胞的细胞质中复制,这在DNA病毒中是独特的特征。他们的存在是不可否认的;然而,与任何新发现一样,仍然存在有关其致病性机制的不确定性,以及Mimivulus Virophage耐药性元件系统(Mimivire)的性质,该术语描述了Mimivirus的免疫网络,这些术语与CRISPR -CAS系统非常相似。本综述的范围是讨论源自对麦米病毒的独特特征进行的结构和功能研究的最新发展,以及有关其针对人类推定的临床相关性的研究。
摘要 人类内源性逆转录病毒 (HERV) 约占人类基因组的 8%。HERV 在早期胚胎中转录,在体细胞中表观遗传沉默,病理条件下除外。HERV-K 被认为可以保护胚胎免受外源性病毒感染。然而,体细胞中不受控制的 HERV-K 表达与多种疾病有关。在这里,我们表明 SOX2 对 HERV-K LTR5H 至关重要,它在维持干细胞多能性方面起着关键作用。在没有 Env 表达的情况下,HERV-K 在生产细胞内进行逆转录转座。此外,我们在表达 SOX2 的诱导多能干细胞的长期培养中发现了新的 HERV-K 整合位点。这些结果表明,HERV-K 对 SOX2 的严格依赖使得 HERV-K 能够在进化过程中保护早期胚胎,同时限制 HERV-K 逆转座对这些早期胚胎中宿主基因组完整性的潜在有害影响。