卷积神经网络(CNN)受到灵长类动物视觉系统的组织的启发,进而成为视觉皮层的有效模型,从而可以准确预测神经刺激反应。虽然对与大脑相关的对象识别任务进行培训可能是预测大脑活动的重要前提,但CNN的大脑样结构可能已经允许准确预测神经活动。在这里,我们在预测视觉皮层的神经反应方面评估了任务精制和脑部优化的卷积神经网络(CNN)的性能,并进行了系统的架构操作以及受过训练的和未经训练的特征提取器之间的比较,以揭示关键的结构组件影响模型性能。对于人类和猴子区域V1,采用RELU激活函数的随机重量CNN与平均或最大池的结合,显着超过了其他激活函数。随机体重CNN在预测V1响应时与训练有素的对应物相匹配。可以预测V1响应的程度与神经网络的复杂性密切相关,这反映了神经激活功能和汇总操作的非线性。但是,对于与物体识别(例如IT)相关的较高视觉区域,编码性能与复杂性之间的这种相关性显着弱。测试视觉区域之间的这种差异是否反映了功能差异,我们在纹理歧视和对象识别任务上训练了神经网络模型。与我们的假设一致,模型的复杂性与纹理歧视的性能更加密切,而不是对象识别。我们的发现表明,具有足够模型复杂性的随机重量CNN允许将V1活动视为训练有素的CNN,而较高的视觉区域则需要通过梯度下降通过训练获得的精确重量配置。
抽象的外观变化是在室外环境中自动驾驶汽车可视定位的最具挑战性问题之一。当前图像与地图中的地标之间的数据关联可能很困难,如果地图是在不同的环境条件下构建的。本文提出了一种解决方案,以构建和使用多条件地图,其中包含在不同条件下记录的序列(白天,夜晚,雾,雪,雨,雨,季节的变化等)。在视觉定位期间,我们利用排名函数从地图中提取最相关的信息。此排名功能旨在考虑车辆的姿势和当前环境状况。在映射阶段,通过不断向地图添加数据来涵盖所有条件,从而导致地图大小的持续增长,进而导致定位速度和性能。我们的地图管理策略是一种增量方法,旨在限制地图的大小,同时使其尽可能多样化。我们的实验是对使用我们的自主班车以及广泛使用的公共数据集收集的真实数据进行的。结果表明,我们的方法在不同的挑战性条件下显着改善了本地化性能。
Fermentalg是微藻研究和生物工业剥削的专家,旨在提供可持续的解决方案和创新产品,从而有助于发展健康,自然和高性能产品。我们的业务:可持续解决方案的开发,生产和营销以及来自微藻的活性成分,用于营养,健康和环境。营养脂质,替代蛋白质,天然食品着色和创新的环境解决方案构成了我们公司当前和未来的产品。发酵股股票在巴黎的EuroNext增长(FR0011271600-藻类)上列出,并且符合PEA -PME的资格。它已从Elthifinance ESG评级获得了示例性评级(90/100),这是一家专门从事欧洲市场上列出的中小企业ESG表现的评级机构,有利于社会负责的投资(SRI)。
目的:对于患有肌萎缩侧索硬化症 (ALS) 的患者,利用代码调制视觉诱发电位 (cVEP) 的脑机接口 (BCI) 拼写器可能为现有的视觉 BCI 拼写器提供一种快速且更准确的替代方案。但到目前为止,cVEP 拼写器仅在健康参与者身上进行过测试。方法:我们评估了 20 名健康参与者和 10 名 ALS 患者的大脑反应、BCI 性能和 cVEP 拼写器的用户体验。所有参与者都执行了提示和自由拼写任务,以及自由选择是/否答案。结果:30 名参与者中有 27 名可以完成提示拼写任务,ALS 患者的平均准确率为 79%,健康老年参与者的平均准确率为 88%,健康年轻参与者的平均准确率为 94%。所有 30 名参与者都可以自由回答是/否问题,平均准确率约为 90%。结论:对于平均每分钟输入 10 个字符的 ALS 患者,本文介绍的 cVEP 拼写器的表现优于其他视觉 BCI 拼写器。意义:这些结果支持 cVEP 信号对 ALS 患者的普遍可用性,这可能远远超出测试的拼写器,例如控制智能家居中的警报、自动门或电视。2021 年国际临床神经生理学联合会。由 Elsevier BV 出版这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
。cc-by-nc 4.0国际许可(未获得同行评审证明),他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
摘要 – 图形可视化是一种帮助用户基于人类感知轻松理解连接数据(社交网络、语义网络等)的技术。随着大数据的盛行,这些图形往往太大,无法仅凭用户的视觉能力进行解读。导致此问题的主要原因之一是节点离开可视化空间。人们已经进行了许多尝试来优化大型图形可视化,但它们都有局限性。在这些尝试中,最著名的是力导向放置算法。该算法可以为中小型图形提供漂亮的可视化效果,但当涉及到较大的图形时,它无法将一些独立节点甚至子图保留在可视化空间内。在本文中,我们提出了一种名为“强制力导向放置”的算法。该算法通过提出更强大的力函数来增强经典的力导向放置算法。我们将其命名为“FForce”,它可以在达到平衡位置之前将相关节点拉近彼此。这帮助我们获得了更多的显示空间,并使我们能够可视化更大的图形。
Zhang, Y., Valsecchi, M., Gegenfurtner, KR, Chen, J. (2023)。拉普拉斯参考是稳态视觉诱发电位的最佳选择。JOURNAL OF NEUROPHYSIOLOGY,130(3),557-568 [10.1152/jn.00469.2022]。
摘要Q(查询)发烧是一种由革兰氏菌细菌引起的感染性人畜共患病。尽管该疾病已经研究了数十年,但由于欧洲各个农场的零星暴发,它仍然代表着威胁。缺乏用于巡逻数据管理的中央平台是一个重要的流行病学差距,在爆发的情况下是相关的。为了填补这一差距,我们已经设计并实施了一个在线,开源的,基于Web的平台,称为Coxbase(https:// coxbase.q-gaps.de)。该平台包含一个数据库,该数据库与元数据旁边有400多个Coxiella隔离株的基因分型信息,以注释它们。我们还使用五种不同的键入方法,查询现有分离株的查询,通过在世界地图上的聚集来对分离株的视觉构造,对分离株的视觉构造,对完全组装的coxiella序列的硅基因分型实现了特征,并提交了新的分离株。我们在从RefSeq数据库中下载的50个Coxiella基因组上测试了我们的计算机打字方法,除了序列质量较差的情况外,我们成功地基因分型了所有基因组。我们使用我们对所有50个基因组及其质粒类型的ADAA基因表型识别了新的间隔序列(MST),并确定了ADAA基因表型。
Téo Kronovsek、Eric Hermand、Alain Berthoz、Alexander Castilla、Matthieu Gallou-Guyot 等人。与年龄相关的视觉空间工作记忆衰退反映在背外侧前额叶激活和认知能力上。行为脑研究,2021 年,第 398 页,第 112981 页。�10.1016/j.bbr.2020.112981�。�hal-03187511�
由库存定义(上图)。第1阶段中的所有对具有水平或垂直方向相同的基础结构。图中的颜色仅用于说明目的;对于参与者,所有形状都是黑色的。中断:在第1阶段之后,在两分钟至24小时之间的五个实验中有一个破裂。参与者在睡眠或清醒状态中度过了休息。训练阶段2:休息后,参与者接触了由不同抽象形状组成的视觉场景。新库存的创建对的一半具有水平,而另一半具有垂直的底层结构。2AFC测试试验:在第2阶段之后,参与者完成了一系列2AFC测试试验,在这些试验中,他们不得不确定训练阶段的真实对还是由形状随机组合创建的箔对,更熟悉。汇报:最后,参与者回答了有关实验的开放性问题,这些问题用于评估他们是否获得了有关形状对的存在的明确知识。