征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
NEDO旨在通过技术开发的综合管理来解决能源和全球环境问题并提高工业技术水平。这包括从发现技术种子到推动中长期项目并支持实际应用。1,568亿日元
人类是一种社会性物种,在以目标为导向的合作过程中会进行复杂的互动。1 社会认知是此类互动的基础,包括三个主要组成部分:模拟、共情和心理化。标准的模拟概念是指一种功能过程,在此过程中,观察者试图自发地(甚至借助想象力)重现另一个人的相同心理状态。2 首先,Gallese 3 将社会认知归因于一种能够立即理解的具身模拟,并且与镜像神经元系统相关,即在执行有意动作(如运动动作)和观察相同动作时激活的神经系统。研究表明,6 个月大儿童在观察动作时运动皮层会被激活。4、5 第二个组成部分是共情,即分享感受和情感的能力。6 它是自动的,每个人都不一样,并且根据观察者与被观察者的关系类型而有所不同。 7、8 第三,心理化是社会认知的重要组成部分,是解读他人心理状态(如欲望、信仰和意图)的能力。9-11
2。提议特此邀请符合合格顾问,他们符合公共采购中包含的准则(印度偏爱制造),2017年(修订了16.09.2020),以准备<项目描述>的详细项目报告>。顾问以唯一的身份或作为合资企业的成员提交建议,应符合2017年公共采购(印度偏爱制造)中包含的准则(对16.09.2020进行修订)。也可以从<代理网站>下载。以5,000卢比的不可退还的文件费(仅五千卢比)的形式在账户提交出价建议时,必须在帐户中提交文件费用,并指定招标ID和出价到期日。
摘要 脑机接口 (BCI) 是一种将大脑活动转化为操作技术命令的系统。脑电图 (EEG) BCI 的常见设计依赖于 P300 事件相关电位 (ERP) 的分类,这是一种由常见非目标刺激中罕见的目标刺激引起的反应。现有的 ERP 分类器很少直接探索神经活动的潜在机制。为此,我们对 P300 ERP-BCI 设计下的多通道真实 EEG 信号的概率分布进行了新颖的贝叶斯分析。我们的目标是识别神经活动的相关时空差异,这为 P300ERP 反应提供了统计证据,并有助于设计高效、准确的个性化 BCI。作为我们对单个参与者分析的一项重要发现,视觉皮层周围通道的目标 ERP 在刺激后约 200 毫秒达到负峰值的后验概率为 90%。我们的分析确定了 BCI 拼写器的五个重要通道(PO7、PO8、Oz、P4、Cz),从而实现了 100% 的预测准确率。从对其他九名参与者的分析中,我们一致地选择了确定的五个通道,并且选择频率对带通滤波器和内核超参数的微小变化具有稳健性。本文的补充材料可在线获取。
多发性硬化症(MS)是中枢神经系统(CNS)的自身免疫性疾病,没有明确的触发因素。然而,流行病学研究表明,遗传性易感性个体中的Epstein-Barr病毒(EBV)感染(EBV)和低维生素D(VIT D)水平等环境因素是重要的危险因素。一个主要建议是,EBV通过分子模拟物等机制触发MS,在该机制中激活的自动反应性B和T淋巴细胞错误地靶向自我抗原。与其他危险因素,低血清VIT D水平,VIT D受体的遗传多态性以及北半球国家的MS发病率更高,这表明VIT D在MS病理学中也起着作用。维生素D,以其神经保护作用和免疫调节作用而闻名,有助于维持促炎和抗炎性免疫细胞之间的平衡。研究和正在进行的临床试验表明,次动物症D与MS的风险增加有关,而VIT D补充剂可以帮助降低疾病的严重程度。此外,次动物症D也与免疫系统失调和增加MS的风险增加有关。本综述探讨了这三个良好认可的危险因素如何在MS的发病机理中相互作用 - EBV感染,次动物症D和失调的免疫系统 - 相互作用。了解这些相互作用及其后果可以为治疗这种毁灭性疾病的新型治疗方法提供新的见解。
本综述评估了用于研究怀孕期间母体影响如何影响后代小胶质细胞(中枢神经系统的免疫细胞)发育的体外模型。所研究的模型包括原代小胶质细胞培养物、小胶质细胞系、iPSC 衍生的小胶质细胞、PBMC 诱导的小胶质细胞样细胞、源自 iPSC 的 3D 脑器官和霍夫鲍尔细胞。我们将评估每种模型复制发育大脑体内环境的能力,重点关注其优势、局限性和实际挑战。重点介绍了可扩展性、遗传和表观遗传保真度以及生理相关性等关键因素。小胶质细胞系具有高度可扩展性,但缺乏遗传和表观遗传保真度。iPSC 衍生的小胶质细胞提供中等的生理相关性和患者特异性遗传见解,但面临着重编程固有的操作和表观遗传挑战。源自 iPSC 的 3D 脑类器官为研究复杂的神经发育过程提供了先进的平台,但需要大量资源和技术专长。霍夫鲍尔细胞是位于胎盘中的胎儿巨噬细胞,与小胶质细胞具有共同的发育起源,它们独特地暴露于产前母体因素,并且根据胎儿屏障成熟度表现出不同的表观遗传保真度。这使得它们特别适用于探索母体对小胶质细胞发育胎儿编程的影响。该综述的结论是,没有一个模型能够全面捕捉母体对小胶质细胞发育的所有方面的影响,但它提供了根据特定研究目标和实验限制选择最合适模型的指导。
从人类的创造中,很有可能会影响疾病,并且随着时间的流逝,他们开始使用各种成分以及植物,动物,昆虫或自然资源来治愈不同的疾病。可以预期,数千年前的植物意识到植物的重要性。植物用于自然方式改善健康。植物不仅用于治疗疾病,而且还可以以不同的方式改善生活,例如改善收入和愉快的生活方式。今天疾病正在传播。糖尿病通常是目前的综合症,它以令人恐惧的速度上升,并且已成为世界上最严重的公共卫生疾病之一。1是一种内分泌结构的疾病,由于胰岛素排放,成就或共同的全部或相对不足,是碳水化合物代谢疾病。糖尿病正在影响世界各地数百万的人,影响糖尿病的人数日益增加。控制这一越来越多的人数已成为一个挑战。由于发达国家数百万人死亡,这对健康而言越来越造成问题,并且在许多崛起和最近工业化的国家中构成威胁。在不同的国家,其导致死亡的比率不同。糖尿病将是2030年的第七名死亡来源。
人工智能:欧洲和罗马尼亚初创企业格局概述及其决定其成功的因素 Adina SĂNIUȚĂ 国立政治研究和公共管理大学 6-8 Povernei St., Sector 1, 012104 布加勒斯特,罗马尼亚 adina.saniuta@facultateademanagement.ro Sorana-Oana FILIP 罗马尼亚 sorana.filip@gmail.com 摘要 人工智能 (AI) 已融入我们生活的许多方面;在技术驱动的时代,企业使用人工智能来提高生产力,更好地了解消费者行为或通过机器人提供服务。基于 Filip (2021) 为论文进行的在线桌面和试点研究,该研究概述了欧洲和罗马尼亚初创企业的格局以及决定其成功的因素,如产品开发核心团队专业知识、核心团队承诺和业务战略。该研究旨在为进一步的论文创建一个框架,该论文将深入研究罗马尼亚的人工智能初创环境,因为经济期刊预测,鉴于罗马尼亚在这一领域的潜力以及 IT、技术和机器人领域的人才库,该市场将在不久的将来增长。关键词人工智能;初创企业;成功因素。介绍人工智能的一般性讨论人工智能 (AI) 有多种形式,从人脸检测和识别系统、搜索和推荐算法到数字助理、聊天机器人或社交媒体。它的复杂性和动态性很难用一个定义来概括 (Zbuchea、Vidu 和 Pinzaru,2019)。据统计,到 2024 年,全球人工智能市场规模预计将达到 5000 亿美元(Statista,2021a),预计人工智能软件市场收入将达到 3275 亿美元(Statista,2021b)。尽管人工智能在过去几年似乎发展迅速,普及度不断提高,但人工智能的历史可以追溯到 20 世纪 50 年代,当时这一概念诞生于科学家、数学家和哲学家的头脑中。艾伦·图灵是第一个对这一主题进行广泛研究的人,他在他的论文“计算机器和智能”中描述了人工智能一词,以及它的构建和测试(Anyoha,2017,第 1 页)。随着图灵测试的引入,他