学习多个参与者之间的时空关系对于群体活动识别至关重要。不同的群体活动通常会展示视频中参与者之间的多样化互动。因此,从时空参与者演化的单一视角来建模复杂的群体活动往往很困难。为了解决这个问题,我们提出了一个独特的双路径参与者交互 (Dual-AI) 框架,它以两种互补的顺序灵活地排列空间和时间变换器,通过整合不同时空路径的优点来增强参与者关系。此外,我们在 Dual-AI 的两个交互路径之间引入了一种新颖的多尺度参与者对比损失 (MAC-Loss)。通过帧和视频级别的自监督参与者一致性,MAC-Loss 可以有效区分单个参与者表示,以减少不同参与者之间的动作混淆。因此,我们的 Dual-AI 可以通过融合不同参与者的这些判别特征来增强群体活动识别。为了评估所提出的方法,我们在广泛使用的基准上进行了大量实验,包括排球 [ 21 ]、集体活动 [ 11 ] 和 NBA 数据集 [ 49 ]。所提出的 Dual-AI 在所有这些数据集上都实现了最佳性能。值得注意的是,所提出的 Dual-AI 使用 50% 的训练数据,其性能优于许多近期使用 100% 训练数据的方法。这证实了 Dual-AI 在群体活动识别方面的泛化能力,即使在有限监督的具有挑战性的场景下也是如此。
摘要:碳纳米植物是一类碳纳米 - 合金支出,已通过来自各种前体的不同途径和方法合成。所选的前体,合成方法和条件可以强烈改变所得材料及其预期应用的理化特性。在此,通过将热解和化学氧化方法结合使用D-葡萄糖从D-葡萄糖中合成碳纳米植物(CND)。在产物和量子产率上研究了热解温度,氧化剂的等效物和回流时间的影响。在最佳条件下(300°C的热解温度,4.41等于H 2 O 2,90分钟的回流)CNDS分别获得了40%和3.6%的产品和量子收率。获得的CND被负电荷(ζ - -potential = - 32 mV),非常分散在水中,平均直径为2.2 nm。此外,在CNDS合成过程中,引入了氢氧化铵(NH 4 OH)作为脱水和/或钝化剂,导致产物和量子产率的显着提高约为1.5和3.76倍。合成的CND显示出针对不同革兰氏阳性和革兰氏阴性细菌菌株的广泛抗菌活性。两个合成的CND都会导致高度菌落形成单位还原(CFU),大多数测试细菌菌株的范围从98%至99.99%。然而,在没有NH 4 OH的情况下合成的CND,由于充满氧化基团的负电荷的表面,在区域抑制和最小抑制浓度方面表现更好。含有高氧纳米模型的抗菌活性升高与其ROS形成能力直接相关。关键字:D-葡萄糖,热解,氧化,细菌感染,最小抑制浓度,CFU降低■简介
人工智能:欧洲和罗马尼亚初创企业格局概述及其决定其成功的因素 Adina SĂNIUȚĂ 国立政治研究和公共管理大学 6-8 Povernei St., Sector 1, 012104 布加勒斯特,罗马尼亚 adina.saniuta@facultateademanagement.ro Sorana-Oana FILIP 罗马尼亚 sorana.filip@gmail.com 摘要 人工智能 (AI) 已融入我们生活的许多方面;在技术驱动的时代,企业使用人工智能来提高生产力,更好地了解消费者行为或通过机器人提供服务。基于 Filip (2021) 为论文进行的在线桌面和试点研究,该研究概述了欧洲和罗马尼亚初创企业的格局以及决定其成功的因素,如产品开发核心团队专业知识、核心团队承诺和业务战略。该研究旨在为进一步的论文创建一个框架,该论文将深入研究罗马尼亚的人工智能初创环境,因为经济期刊预测,鉴于罗马尼亚在这一领域的潜力以及 IT、技术和机器人领域的人才库,该市场将在不久的将来增长。关键词人工智能;初创企业;成功因素。介绍人工智能的一般性讨论人工智能 (AI) 有多种形式,从人脸检测和识别系统、搜索和推荐算法到数字助理、聊天机器人或社交媒体。它的复杂性和动态性很难用一个定义来概括 (Zbuchea、Vidu 和 Pinzaru,2019)。据统计,到 2024 年,全球人工智能市场规模预计将达到 5000 亿美元(Statista,2021a),预计人工智能软件市场收入将达到 3275 亿美元(Statista,2021b)。尽管人工智能在过去几年似乎发展迅速,普及度不断提高,但人工智能的历史可以追溯到 20 世纪 50 年代,当时这一概念诞生于科学家、数学家和哲学家的头脑中。艾伦·图灵是第一个对这一主题进行广泛研究的人,他在他的论文“计算机器和智能”中描述了人工智能一词,以及它的构建和测试(Anyoha,2017,第 1 页)。随着图灵测试的引入,他
简介 十一年前,马希尔 (Maher) 问道:“谁在创造?” (Maher 2012),并提出了几个创造性应用的分析空间,包括构思和互动两个维度。马希尔的问题引出了乔丹诺斯 (Jordanous) 的 PPP 视角框架,其中创造行为可以由人类或人工智能 (Jordanous 2016) 执行,以及坎托萨洛 (Kantosalo) 和塔卡拉 (Takala) 的 5C 框架,其中创造行为由人类和人工智能共同组成的集体执行 (Kantosalo and Takala 2020)。1然而,对于人与人工智能互动中创造力的位置,人们的共识较少。混合主动性创造性界面方法提出了一组基本的细粒度活动,这些活动可以由人类或人工智能以某种结构化对话的形式执行(Deterding 等人,2017 年;Spoto 和 Oleynik,2017 年),随后扩展到生成应用(Muller、Weisz 和 Geyer,2020 年),针对特定算法方法进行了改进(Grabe、Duque 和 Zhu,2022 年),并针对其他算法方法进行了批评(Zheng,2023 年)。虽然这些方法生成了重叠的分析动作词汇,但它们并没有解决创造力在何处发生(以及由谁或什么通过这些动作发生)的问题。在这篇短文中,我们提供了对该问题的一个答案的几个例子。我们重新利用 Kantosalo 和 Takala (2020) 的 5C 中的集体概念,提出一种类型的创造力可能会在以下互动空间中不对称地出现 (Rezwana and Maher 2022)
目标:情绪斯特鲁普效应被定义为与中性刺激相比,对情绪刺激的反应时间增加。文献中经常报道这种效应,包括行为和神经生理层面的报道。本研究的目的是调查在情绪斯特鲁普任务中,有精神分裂症和躁郁症风险的个体的大脑前额叶激活情况。我们预计会观察到与健康对照组相比,高危人群的激活程度会降低。方法:精神病高风险(HR)、精神病超高风险(UHR)、躁郁症风险(BIP)个体和健康对照组(HC)执行情绪斯特鲁普任务,其中包括正价、负价和中性词。功能性近红外光谱(fNIRS)用于测量代表背外侧前额叶和额颞叶皮层大脑活动的氧合血红蛋白(O 2 Hb)水平。结果:结果显示,与 HC 组相比,HR 组和 UHR 组的右背外侧前额叶皮层 (DLPFC) 的 O 2 Hb 水平显著降低,表明活动性较低。尽管这种下降与词语的价数无关,但对于负面词语来说,下降最为明显。此外,与 HC 组相比,所有高危人群的额颞叶皮层 (FTC) 中的 O 2 Hb 水平均显著降低。结论:精神病和躁郁症风险人群的 FTC 活动性降低反映了非特异性功能障碍。HR 组和 UHR 组 DLPFC 活动性降低表明,在有精神分裂症精神病风险的个体中已经发现了额叶功能减退。
结果和讨论:结果表明,随着温度与最佳生长条件紧密对齐,11月1日的播种产生了1446 kg ha -1的最高种子产量。藜麦的干旱耐受性意味着灌溉能够维持农作物的生长和产量。虽然农作物对更高的n剂量做出了积极反应,但研究发现,考虑到浅层底层土壤条件和潜在的住宿问题,使用100 kg n ha -1是最佳的。此外,水生产率,蛋白质和皂苷含量反映了与种子产量相似的趋势。结果表明,早期播种,40%ET C和100 kg N HA -1的灌溉产生的种子产量为1446 kg ha -1,表现出较高的碳效率和可持续性,同时最小化n 2 O发射。但是,这些策略应针对特定的生态条件量身定制。总体而言,该发现证实了印度2600万公顷浅层玄武岩穆拉姆土壤中藜麦的耕种潜力,在那里其他作物可能不会在经济上繁衍生息。
● Consor 对 442 名居民进行了调查,以确定 WAC 的社区使用优先事项。调查结果显示,社区/社会活动 (79%)、紧急/灾难响应 (76%)、人类/社会关怀 (73%) 和健康/医疗护理 (72%) 是首要优先事项。● 获得俄勒冈州能源部 (ODOE) 颁发的 3 万美元太阳能和电池备份可行性研究奖。● Food for Lane County 为 Oakridge Food Box 提供了 5 万美元的资助。2024
我们研究了一种在原子薄的半导体中诱导超导性的机制,激子介导电子之间的有效吸引力。我们的模型包括超出声子介导的超导性范式的相互作用效应,并连接到玻色和费米极性的良好限制。通过考虑TRIONS的强耦合物理,我们发现有效的电子相互作用会形成强频率和动量依赖性,并伴随着经历了新兴的BCS-BEC交叉的系统,从弱绑定的S-波库珀对Bipolarons的超浮雕。即使在强耦合时,双丙酸也相对较轻,从而导致临界温度占费米温度的10%。这使二维材料的异质结构有望在通过电子掺杂和Trion结合能设置的高临界温度下实现超导性。
能够产生创造性成果的人工智能 (AI) 系统正在重塑我们对创造力的理解。这种转变为创造力研究人员提供了一个重新评估创造过程关键组成部分的机会。特别是,人工智能的先进能力凸显了研究创造力内部过程的重要性。本文探讨了这些内部过程背后的神经生物学机制,并描述了创造力的体验成分。结论是,尽管人工智能和人类创造力的产物可能相似,但内部过程却不同。本文还讨论了人工智能如何对人类创造力的内部过程产生负面影响,例如技能的发展、知识的整合和思想的多样性。
