•与人类研究一致(例如苯,丙烯醛等)暴露会诱导内皮毒性并损害其修复机制。•苯暴露会诱导胰岛素抵抗并促进心脏功能障碍。•体外研究表明,VOC暴露会诱导ER应激,并增强热休克蛋白作为适应性反应
在阳光照射下,大气中的挥发性有机化合物 (VOC) 与氮氧化物发生反应,形成臭氧。当臭氧在近地面大气中浓度较高时,会造成生态破坏,并对人类健康产生有害影响 [l, 21。因此,显然需要改善这些影响,但由于臭氧是一种二次污染物,因此这并不是一件容易的事情。不过,现在有大量科学证据支持模型预测,即大气中 VOC 浓度的降低将导致大气臭氧浓度的降低。因此,在联合国欧洲经济委员会《越境空气污染公约》 [3] 的支持下,国际谈判最近得以完成。根据该公约,1991 年 11 月,包括英国在内的 20 个县签署了一项新议定书,旨在限制向大气中排放挥发性有机化合物。根据该议定书,英国同意确保到 2000 年,其每年向大气排放的 VOC 比 1988 年的水平至少减少 30%。除了该议定书之外,欧盟还正在制定立法,要求减少向大气排放的 VOC,例如与石油工业产品(包括汽油)的储存有关的 VOC [4]。
个体挥发性有机化合物(VOC)的最大排放是丁苯,甲苯,五烷,丙烷,乙醇和“白精神”。VOC在内,包括丁烷等碳氢化合物,是带来环境和健康风险的主要空气污染物。通过转换VOC的有效缓解需要高级催化剂,例如在混合金属氧化物上支撑的PT,PD,AU,RU和RH。这项研究评估了在不同温度,GHSV和丁烷浓度条件下的丁烷燃烧基于贵族的工业商业催化剂。催化剂在低温下实现了完整的丁烷转化率,高稳定性高于长时间使用。动力学研究强调了PT分散在增强丁烷激活和催化活性中的作用。这些发现证明了基于贵族的催化剂在碳氢化合物燃烧和VOC控制中的工业应用的潜力,从而为能源和环境挑战提供了可持续的解决方案。
抽象的挥发性有机化合物(VOC)触发呼吸刺激性与三甲基尿症(TMAU)等疾病有关,“人们对我过敏”(PATM)(PATM),这些(PATM)发生在没有明确综合综合性关联的健康个体中。尽管没有建立的非靶向非挑战性诊断程序,但最近的研究还是使用了使用气相色谱 - 质谱法鉴定了与PATM相关的歧视性VOC。源于血液的呼吸VOC,对非侵入性诊断有望。我们对23个表现出TMAU样症状的人进行了呼气分析,并确定了各种挥发性有机化合物(VOC),这些化合物(VOC)区分了不同的亚组。使用逻辑回归,我们的准确性为88%,精确度和回忆为88-89%,将TMAU阴性个体与人生某个时候测试阳性的人区分开,仅基于氧化丙烷的存在(((2R)-2-甲氧烷-2s-甲氧烷和(2SS)-2-甲氧烷-2-甲氟烷)。但是,由于子集有限和缺少数据,它不能充当独立的生物标志物。将其他VOC包含在分析中,将模型的精度提高到85-95%,精确度和召回率在85%至100%之间,具体取决于使用的VOC组合。无监督的学习算法通常基于内源性VOC进行了积极测试的个体,而经过负测试的个体被聚集为两个不同的组。相反,TMAU阴性组表现出与空气样品中二级氧化应激相关的生物标志物的可能性更高。甲苯以前发现在PATM个体中升高,被确定为先前被诊断为TMAU的人的歧视性标记,但此后曾在仍经历症状的同时测试阴性。其他PATM生物标志物(例如P-二甲苯和六基因)在TMAU阳性个体中通常更高,并且与其他VOC相结合时是TMAU史的良好预测指标。我们的分析表明,TMAU阳性基团表现出更大的生物标志物,表明其呼吸样品中的晚期氧化应激和空气样品中的原发性氧化应激可能来自其皮肤。我们的发现突出了呼吸分析的潜力,作为用于特发性疾病的非侵入性诊断工具。他们强调了分析外源化学物质以洞悉代谢,解毒和消除毒素的重要性。这种方法可以帮助消除不必要的挑战测试,并强调代谢组学在理解这些条件下的机制中的作用。
表1.1更新的建议..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 11表1.2此版本中的附录........................................................... roads............................................................................................ 13 Table 2.2 Average hourly value of travel time by vehicle type – urban ............................................................ 14 Table 2.3 Average hourly value of travel time by vehicle type – rural .............................................................. 14 Table 2.4 Vehicle occupancy – urban ............................................................................................................................ 14 Table 2.5 Vehicle composition – urban ......................................................................................................................... 15 Table 2.6 Access, waiting, transfer and unexpected delay time multipliers ........... Error!书签未定义。adj。Urban Stop-start Model VOC: Full financial cost (cents/km) ...................... 26 Table 3.12 TfNSW Dep.adj。Table 2.7 Value of transfer ............................................................................................................................................... 16 Table 3.1 Urban vehicle operating cost models: low speed resource costs ($/km) .................................... 18 Table 3.2 Coefficients for the ATAP Urban Stop-Start Model and the Freeway Model ........................... 19 Table 3.3 ATAP Urban Start-stop Model VOC: Resource cost (cents/km) ..................................................... 20 Table 3.4 ATAP Urban Freeway Model VOC: Resource cost (cents/km) ..........................................................21 Table 3.5 Urban vehicle operating costs: fuel cost including taxes (cents/km) .......................................... 22 Table 3.6 ATAP Urban Stop-start Model VOC: Full financial cost (cents/km) .............................................. 23 Table 3.7 ATAP Urban Freeway Model VOC: full financial cost (cents/km) ................................................... 23 Table 3.8 Coefficients for the TfNSW depreciation-adjusted Model .............................................................. 24 Table 3.9 TfNSW depreciation-adjusted urban stop-start model VOC: Resource cost (美分/公里)..... 25表3.10 TFNSW折旧调整的城市高速公路模型VOC:资源成本(Cents/km)...... 25表3.11 TFNSW DEP。
在已发表的文献中,可扩展的MOF或可以在更大规模上合成而其性质没有明显变化的MOF的两个例子是HKUST-1 10和MIL-68(Al)。11这两种MOF可以大规模合成而不会遇到很多问题。其他有前景的MOF可以评估其大规模生产的能力,包括ZIF-8 12和A520。13深入研究揭示了MOF在去除挥发性有机化合物(VOC)方面的应用。14–17与ZIF-67和CAU-10一起,这六种MOF将评估其吸附VOC以对抗污染的能力。污染主要来自燃料燃烧、交通废气、工业废气和光化学污染、香烟、油烟、建筑材料、涂料等。 18 根据欧盟规定,在101.3kPa大气压下,有机物的初沸点低于250℃即为VOC。环境中VOC的增加已导致全球空气质量大幅下降,最终对民众的健康和福祉造成严重影响。19
抽象引入挥发性有机化合物(VOC)可能是由潜在的代谢引起的,并且可以在呼气的呼吸中检测到,因此为非侵入性诊断提供了有希望的途径。稳健,精确且可重复的呼吸测量平台能够识别可与背景污染物区分的呼吸中的VOC,这是基于呼吸的生物标志物的自信污染物。建立可靠的呼吸收集和分析方法的目标,该方法可以在异质人口的呼吸中产生全面的VOC列表。方法分析队列由90对呼吸和背景样品组成,这些样品从异质群中收集。Owlstone Medical的呼吸活检®Omni®平台,包括样品收集,TD-GC-MS分析和特征提取。vot至少符合三个预定义的指标中的至少一个,则确定为“呼吸”。使用保留索引和高分辨率准确的质谱匹配,通过与纯化的化学stan dards进行比较来鉴定呼吸。结果在> 80%的样品(呼吸和背景)中存在1471个VOC,至少一个度量为585个。已确定为148个,涵盖了广泛的化学类别。结论已经开发了一种强大的呼吸收集和相对定量分析方法,该方法产生了148个呼吸ov的列表,该清单使用异源种群中的纯化化学标准标识。此外,此VOC列表可用于促进跨研究数据比较,以改善标准化。提供真正呼吸的确认的VOC身份,将促进未来的生物标志物发现以及随后的临床研究生物标志物验证。
在土壤环境中,出于自适应原因,真菌VOC被认为是发展的,以促进交流并充当许多功能的发展信号。通过土壤的气态和液体相通过气体和液体相位的波动性和扩散性,赋予它们充当信号分子的能力,能够在多孔空间中易于移动,从而在长距离上介导通信。此外,真菌产生的不同化合物具有修改植物产生的VOC的特征,以使它们可以改善对害虫和病原体的攻击或改善对不同非生物压力条件的反应的防御[3]。取决于植物收到真菌VOC的刺激的方式,数量和力矩,反应可能会有所不同。
摘要:胃肠道(GI)疾病在整个美国都有很高的患病率。筛选和诊断方式通常很昂贵且侵入性,因此,人们不会有效地利用它们。缺乏适当的筛查和诊断评估可能会导致诊断性延迟,诊断时更晚期疾病以及发病率和死亡率更高。对肠道微生物组的研究表明,营养不良或有机体组成的不利改变是在各种胃肠道疾病的临床症状发作之前。gi疾病诊断研究导致朝着非胃肠道筛查的非侵入性方法的转变,包括测量挥发性有机化合物(VOC)的变化的化学检测测试,这些测试是细菌代谢的副产品,导致粪便的独特气味。这些工具中的许多都是昂贵的,不动的台式仪器,需要训练有素的个人来解释结果。这些属性使它们难以在临床环境中实施。另外,电子鼻子(电子鼻)是相对便宜的手持设备,可利用多传感器阵列和模式识别技术来分析VOC。The purpose of this review is to (1) highlight how dysbiosis impacts intestinal diseases and how VOC metabolites can be utilized to detect alterations in the microbiome, (2) summarize the available VOC analytical platforms that can be used to detect aberrancies in intestinal health, (3) define the current technological advancements and limitations of E-nose technology, and finally, (4) review the围绕几种肠道疾病的文献可以使用顶空VOC检测或预测疾病。