1简介自主控制算法的设计是一项艰巨的任务,因为它传统上需要大量的现实测试,这既耗时又昂贵。仿真是自治设计的宝贵工具,例如,以时间和成本效益的方式协助参数调整,算法测试。此外,在机器学习范围(ML)的范围内,由于其生成训练数据的能力,模拟具有吸引力。在此,我们证明了模拟引擎[1]和自治研究床(ART)[2]平台来促进自治政策制定过程,以避免ML控制政策。这项工作建立了以前的贡献,这些贡献证明了控制策略的各种多速路径的可传递性[3,4]。这项研究证明了通过机器学习(ML)避免障碍物的额外能力。ML已通过收集的数据进行了培训,而人类驾驶员则在模拟器中驱动。
摘要 - 智能机器人技术在维护,维修和大修(MRO)机库操作方面具有重要意义,其中移动机器人可以在其中导航复杂而动态的环境,以进行飞机视觉检查。飞机机库通常忙碌而变化,形状和尺寸各不相同,呈现出严格的障碍物和条件,可能导致潜在的碰撞和安全危害。这使得障碍物检测和避免对安全有效的机器人导航任务至关重要。常规方法已在计算问题上应用,而基于学习的方法的检测准确性受到限制。本文提出了一个基于视觉的导航模型,该模型将预训练的Yolov5对象检测模型集成到机器人操作系统(ROS)导航堆栈中,以优化复杂环境中的障碍物检测和避免。该实验在ROS-Gazebo模拟和Turtlebot3 Waffle-Pi机器人平台中进行了验证和评估。结果表明,机器人可以越来越多地检测并避免障碍物,而无需碰撞,同时通过不同的检查点导航到目标位置。关键字 - 自主导航,对象检测,避免障碍物,移动机器人,深度学习
德勤为许多全球最受赞赏的品牌提供业界领先的审计、咨询、税务和顾问服务,其中包括近 90% 的《财富》500 强企业和 8,500 多家美国私营公司。在德勤,我们努力实现我们的目标,即通过在更公平的社会中建立信任和信心来发挥重大影响。我们利用我们独特的商业敏锐度、技术掌握和战略技术联盟为各行各业的客户打造未来提供建议。德勤很自豪能够成为全球最大的专业服务网络的一部分,在对他们最重要的市场上为客户提供服务。我们的成员所网络拥有超过 175 年的服务历史,遍布 150 多个国家和地区。了解德勤全球约 460,000 名员工如何相互影响,请访问 www.deloitte.com。
公司治理(CG)被广泛认为可以防止管理层采取有害行动,从而对公司产生不利影响。如果公司的CG指数或价值很高,则期望公司的性能更好。但是,事实表明,并非所有具有高CG指数的公司也表现出良好的性能(Alhares&Albaker,2023年)。本研究中解决的问题是有关税收合规性和CG的混合发现。一些研究表明CG产生负面影响,而另一些研究显示了相反的结果。本研究旨在研究CG对税收合规性和参与税收大赦计划的影响,据信这将在未来增强纳税人的遵守情况。本研究中采用的方法是多元回归分析,税收合规为中间变量。测试结果表明,CG指数对避税税收差异(ABTD)有负面影响。这些发现表明,CG可以防止公司施加违规税收。研究还发现,CG不会直接影响公司参与印度尼西亚的税收大赦计划。相反,CG通过积极的避税会间接影响参与税收大赦计划。关键词:公司治理,积极的税收大赦,回避作者的个人贡献:概念化 - T.E.J.,M.W.Z.,P.S.K。和P.M.J.L.;方法论 - T.E.J.,M.W.Z。和P.S.K.;验证-T.E.J.,M.W.Z.,P.S.K。和P.M.J.L.;正式分析 - T.E.J.,M.W.Z.,P.S.K。和P.M.J.L.;数据策划-T.E.J。;调查 - T.E.J.,M.W.Z。和P.S.K.;写作 - 原始草稿 - T.E.J.;写作 - 评论和编辑 - T.E.J.,M.W.Z.,P.S.K。和P.M.J.L.对冲突的宣言:作者宣布没有利益冲突。1。简介公司治理(CG)是提高经济效率,涵盖公司管理,董事会,股东和其他其他
图1:实验设置。一个带有多电极阵列的储罐,用于记录电信号,然后通过我们的自定义电控界面(EFI)进行放大并随后处理。坦克用月光下列的坦克照亮,以模拟夜间状况,并使用高架摄像头跟踪游泳行为。b代表性热图显示了活鱼对的运动模式。颜色梯度从深蓝色到黄色,指示较高的访问频率或延长的停留时间,偏爱储罐墙附近的位置。在分布中的圆形间隙概述了储罐弯曲的角和多电极阵列的位置,由八个测量电极组成,它们成对在水箱的相对侧面成对。c记录的EOD波形的出现取决于鱼对电极的相对位置。p =正,n =负。d的示例性电相互作用的时间表,垂直条代表了两条鱼的颜色编码的EOD。隔离间隔(IDI)表示同一个人连续信号之间的时间。可能会重叠。回声反应的特征是固定潜伏期(M. Rume中的15-22毫秒),一条鱼对另一种鱼的EOD做出反应。两种鱼的相互回声都会产生时间锁定的信号传导序列,称为EOD同步。
对避免进近倾向的调查传统上依赖于基于计算机的技术,这些技术主要是通过改编时间来表征人类行为的。但是,这些技术无法准确量化其他动力变量,例如手动速度和运动方向。为了解决这些限制,已经开发了新的机器人设备,从而为人类行为提供了更多样化和准确的定量评估。本技术报告介绍了Kinarm上的避免接近任务的适应性,这是一个机器人平台,旨在跟踪参与者与虚拟环境互动的上肢运动。这种避免进近任务的这种变体评估了两个臂在十二个方向上的运动。此外,可以应用电阻载荷来研究物理效果在避免进近倾向或支持康复方案中的作用。数据和来自试验样本(n = 5)的数据突出了Kinarm进近避免接近任务的功能(KAAT)。
摘要 - 强化学习(RL)已成为复杂环境中自动决策的有效范式。但是,在RL中,事件驱动的决策过程的集成仍然是一个挑战。本文介绍了一种新颖的体系结构,将离散事件监督(DES)模型与标准RL框架相结合,以创建混合决策系统。我们的模型利用了DES的能力来管理基于事件的动态,而RL代理对连续状态和行动的适应性,从而促进了以连续和离散事件为特征的系统中更强大,更灵活的控制策略。DES模型与RL代理一起运行,通过基于事件的见解来增强策略的性能,而环境的状态过渡则由机械模型约束。我们通过模拟证明了方法的功效,这些模拟显示出比传统RL实现的性能指标的改进。我们的结果表明,这种综合方法对从工业自动化到智能交通系统的应用有望在离散事件处理至关重要的情况下。索引术语 - 预言学习,离散事件超级访问控制,混合系统,自主决策,事件驱动的动态
1日本京都2临床心理学,大阪大学,日本苏亚大学3号临床心理学,日本,日本健康与医学研究小组,智力坦克研究小组,日本智能研究小组,KDDI Research,Inc.,Kddi Research,Inc.,Kddi Research,Inc。
摘要非convex优化的主要挑战是找到一个全局最佳的挑战,或者至少要避免“不良”本地最小值和毫无意义的固定点。我们在这里研究算法与优化模型和正则化相反的程度可以调整以实现这一目标。我们认为的模型是许多局部最小值的非概念,不一致的可行性问题,在这些点上,这些点之间的差距在这些点的附近最小。我们比较的算法都是基于投影的算法,特别是环状投影,环状放松的Douglas-Rachford算法以及放松的Douglas-Rachford在产品空间上分开的。这些算法的局部收敛和固定点已经在详尽的理论研究中表征。我们在轨道分辨光子发射光谱(ARPES)测量的轨道层析成像的背景下演示了这些算法的理论,这些理论都是合成生成和实验性的。我们的结果表明,虽然循环投影和循环恢复了Douglas-Rachford算法通常会汇聚最快,但重新使用Douglas-Rachford在产品空间上划分的方法确实从其他两个算法的不良本地算法中移开,最终从其他两个算法中掌握了当地最小值的群库,与全球范围的群体相关点,以确定了与全球范围相对应的群体的关键点。
这项研究涉及无人直升机的控制,强调形成控制,目标跟踪,避免障碍和连续性维护。该研究采用终端滑动模式控制(TSMC)来调节直升机的位置和态度,而通用的预测控制(GPC)策略则用于通过领导者追随者的方法来形成控制。使用人工电位(APF)方法实现避免障碍物。仿真结果表明,在六个不同的任务中,快速收敛时间不到三秒钟,这表明直升机在保持静态障碍和动态障碍的同时保持其形成的能力。最初的三个任务涉及在三角形形成中组织的三架直升机,成功地避免了障碍物并以低于1%的错误率保持连续性。随后的三个任务,涉及五架五角形配置的五架直升机,类似地说明了有效的导航和动态目标跟踪。值得注意的是,领导直升机始终跟踪静态和动态目标,以确保形成的完整性。这项研究通过探索多代理直升机操作和障碍物遍历的复杂性来促进该领域,从而强调了在动态场景中保持连通性和形成的关键重要性。这些发现强调了拟议的控制策略的有效性,为包括军事和民用领域在内的各个部门的未来应用提供了宝贵的见解。