提及的所有商标均为 Huntsman Corporation 或其关联公司在一个或多个(但不是所有)国家/地区的财产或已获授权。本文所述产品(以下简称“产品”)的销售须遵守 Huntsman Advanced Materials LLC 或其适当关联公司的一般销售条款和条件,包括但不限于 Huntsman Advanced Materials (Europe) BVBA、Huntsman Advanced Materials Americas Inc.、Huntsman Advanced Materials (Hong Kong) Ltd. 或 Huntsman Advanced Materials (Guangdong) Ltd.(以下简称“Huntsman”)。以下内容取代买方文件。尽管据 Huntsman 所知,本出版物中的信息和建议在出版之日是准确的,但本出版物中包含的任何内容均不得解释为任何明示或暗示的陈述或保证,包括但不限于任何适销性或针对特定用途的适用性的保证、不侵犯任何知识产权的保证、或有关质量或与先前描述或样品的一致性的保证,并且买方承担因使用此类产品而导致的所有风险和责任,无论是单独使用还是与其他物质结合使用。本文所述的任何声明或建议均不得解释为关于任何产品是否适合买方或用户的特定用途的陈述,或侵犯任何专利或其他知识产权的诱因。数据和结果基于受控条件和/或实验室工作。买方有责任确定此类信息和建议的适用性以及任何产品是否适合其特定用途,并确保其对产品的预期用途不侵犯任何知识产权。产品可能具有或变得具有危险性。买方应 (i) 从亨斯迈获取材料安全数据表和技术数据表,其中包含有关产品危害和毒性的详细信息,以及产品的正确运输、处理和储存程序;(ii) 采取一切必要措施,充分告知、警告并让可能处理或接触产品的员工、代理商、直接和间接客户和承包商了解与产品有关的所有危害以及安全处理、使用、储存、运输和处置以及接触产品的正确程序;(iii) 遵守并确保可能处理或接触产品的员工、代理商、直接和间接客户和承包商遵守适用的材料安全数据表、技术数据表或亨斯迈提供的其他说明中包含的所有安全信息以及与产品的处理、使用、储存、分销和处置及接触有关的所有适用法律、法规和标准。请注意,产品可能因国家/地区而异。如果您有任何疑问,请联系您当地的亨斯迈代表。
网络安全网格将传统的安全边界分散化,从单一防御点转变为针对每个节点(无论是设备、应用程序还是网络段)的独特安全措施。这种结构大大降低了未经授权的访问可能性。借助 SDP 架构,核心系统对潜在威胁不可见。同时,由私有区块链技术支持的定制代理为用户和设备引入了进化的数字身份和访问控制系统。通过集成零信任范式,任何实体(无论是内部还是外部)都不会获得默认信任。微分段进一步确保如果某个段受到损害,它将保持隔离,从而保护更广泛的卫星网络的完整性。
随着后段制程 (BEOL) 互连尺寸的不断减小,RC 延迟已成为导致整体性能下降的主要原因 [1-2]。为了降低互连的电阻率和电容,人们采用了各种策略,例如优化制造工艺 [3-4]、修改导线的几何形状 [2] 以及利用低 k 电介质等新材料 [5-6]。然而,这些修改虽然可以通过芯片缩小尺寸来提高性能,但往往会以牺牲可靠性为代价 [7-9]。因此,对互连可靠性的广泛研究提供了有价值的评估和建议,以便在较长的使用寿命内保持性能。考虑到金属可靠性,由电子风驱动的电迁移 (EM) [10-11] 和由应力梯度驱动的应力诱导空洞 (SIV) [12] 研究了扩散主导的故障机制。对于电介质,由于金属间距最小化和介电性能较弱而产生的高电场使时间相关电介质击穿 (TDDB) 在最近的研究中也很重要 [13]。
60. 见下文第二部分 B.1-3。 61. 《外层空间条约》,上文注 4,第 II 条。 62. 比较 John G. Wrench,《不占用,没问题:外层空间条约已为小行星采矿做好准备》,51 CASE W. R SRV. J. I NT'LL. 437, 447 (2019)(指出将不占用原则解释为全面禁止资源所有权是错误的);与 Zielinksi,上文注 7(解释允许开采和商业化太空资源的国家并不认为该活动是占用);以及 Ricky J. Lee,《外层空间条约第二条:禁止国家主权、私有财产权或两者》,11 A USTL。 I NT'L LJ 128,130,133(2004)(指出第二条的中文翻译只是禁止国家而不是私人实体占有月球和其他天体)。
摘要 我们开发了一种分析填充粒子的工具,以应对颗粒生物材料日益流行的趋势。颗粒水凝胶,包括微孔退火粒子 (MAP) 支架,是一类用于治疗应用的材料,因为它们具有独特的性质,包括粒子之间的微孔隙度。颗粒材料的微观结构很难研究,这导致该领域的许多人报告不可靠的空隙体积分数度量和/或 2D 切片近似“孔径”作为空隙空间的唯一特征。为此,我们创建了 LOVAMAP,这是一款定制软件,它结合了计算几何和图论技术,将空隙空间分割成 3-D 孔隙,这是开放空间的自然口袋。LOVAMAP 的 44 个支架特征为用户提供了描述支架内部和入口的定量概况。我们视觉丰富的输出解决了诸如空隙大小、形状、连通性、路径、各向同性/各向异性、配体可用性以及渗透/迁移限制等主题。使用 LOVAMAP,我们研究了 60 种不同类型的颗粒支架,包括具有相应细胞数据的真实 MAP 支架。我们使用高维分析来表明,我们软件的输出数据可用于对 3-D 孔隙类型进行分类,以及通过生成数字“指纹”来表征整个支架。结合细胞数据,LOVAMAP 揭示了神经球形成与支架空隙几何形状之间的关系。LOVAMAP 是一种支持技术,广泛应用于颗粒生物材料研究以及研究颗粒材料的所有领域。背景由于颗粒生物材料越来越受欢迎,填充颗粒及其周围的空隙(间隙空间、孔隙空间)是一个热门研究课题。颗粒材料在许多应用领域都很有吸引力,包括可注射组织模拟物和 3D 生物打印,因为它们具有独特的属性,例如剪切稀化行为、增加的材料表面积以及离散异质性的选项 1,2。由水凝胶微粒(微凝胶)制成的颗粒材料已用于促进多种疾病模型中的伤口愈合,包括中风 3、心肌梗死 4、皮肤伤口 5 和脊髓损伤 6。当微凝胶堆积在一起时,它们形成一种称为颗粒支架的 3D 结构,当颗粒支架的微凝胶连接在一起时,所得到的稳定结构称为微孔退火颗粒 (MAP) 支架 7。堆积的微凝胶在整个支架中形成空隙空间微孔,从而使细胞在颗粒之间畅通无阻地浸润和迁移。许多研究支持局部几何形状影响细胞行为的观点 8-13 ,并且在颗粒支架中,细胞感知到的局部几何形状是空隙空间的微观结构。因此,我们的目标是了解颗粒支架的内部几何形状,以改进材料设计。在生物材料领域,使用二维显微镜图像近似的孔隙率是最常见的支架空隙空间量化方法。孔隙率通常报告为孔隙体积分数或二维“孔”长度测量值的分布。我们之前已经揭示了报告孔隙率的这种近似值的细微差别 14 ,我们认为空隙体积分数和二维孔隙近似值不足以作为独立指标,因为它们忽略了三维空隙空间局部口袋中的复杂性和几何多样性。其他领域(数学、物理、地球科学、化学、农业等)对堆积颗粒进行了广泛的研究,而没有考虑空隙空间几何形状如何影响细胞的行为。研究通常侧重于粒子本身,其中已经开发出方法来识别粒子边界 15-17 或构建接触粒子的图形以研究粒子连通性、填充配置和应力链 18-23 。然而,这些结果未能表征空隙空间。一些以粒子为中心的研究包括有关空隙空间的信息,
提及的所有商标均为亨斯迈公司或其关联公司在一个或多个(但不是所有)国家/地区的财产或已获授权。本文所述产品(以下简称“产品”)的销售须遵守亨斯迈先进材料有限责任公司或其适当关联公司的一般销售条款和条件,包括但不限于亨斯迈先进材料(欧洲)有限公司、亨斯迈先进材料美洲公司、亨斯迈先进材料(香港)有限公司或亨斯迈先进材料(广东)有限公司(以下简称“亨斯迈”)。以下内容取代买方文件。尽管据 Huntsman 所知,本出版物中的信息和建议在出版之日是准确的,但本出版物中包含的任何内容均不得解释为任何明示或暗示的陈述或保证,包括但不限于任何适销性或针对特定用途的适用性的保证、不侵犯任何知识产权的保证、或有关质量或与先前描述或样品的一致性的保证,并且买方承担因使用此类产品而导致的所有风险和责任,无论是单独使用还是与其他物质结合使用。本文所述的任何声明或建议均不得解释为关于任何产品是否适合买方或用户的特定用途的陈述,或侵犯任何专利或其他知识产权的诱因。数据和结果基于受控条件和/或实验室工作。买方有责任确定此类信息和建议的适用性以及任何产品是否适合其特定用途,并确保其对产品的预期用途不侵犯任何知识产权。产品可能具有或变得具有危险性。买方应 (i) 从亨斯迈获取材料安全数据表和技术数据表,其中包含有关产品危害和毒性的详细信息,以及产品的正确运输、处理和储存程序;(ii) 采取一切必要措施,充分告知、警告并让可能处理或接触产品的员工、代理商、直接和间接客户和承包商了解与产品有关的所有危害以及安全处理、使用、储存、运输和处置以及接触产品的正确程序;(iii) 遵守并确保可能处理或接触产品的员工、代理商、直接和间接客户和承包商遵守适用的材料安全数据表、技术数据表或亨斯迈提供的其他说明中包含的所有安全信息以及与产品的处理、使用、储存、分销和处置及接触有关的所有适用法律、法规和标准。请注意,产品可能因国家/地区而异。如果您有任何疑问,请联系您当地的亨斯迈代表。
来自世界各地的高管、董事会和商业领袖带着他们最复杂、最关键的业务问题来到 FTI Consulting,这些问题需要多种技能和综合学科。作为我们战略传播部门的一部分,我们为数十名高级管理人员和知名人士提供社交媒体策略、内容和渠道管理方面的支持,通过结合数十年的深厚主题专业知识和职能和学科经验,帮助他们降低风险并提高声誉。简而言之,我们帮助客户通过任何渠道进行有效沟通,以保护和增强他们与关键利益相关者的利益。
摘要:一些物理理论预测,宇宙中几乎所有的大脑都是玻尔兹曼的大脑,即短暂的无形大脑,由于热力学或量子波动而意外地组装。物理学家和哲学家广泛认为这种扩散是不可接受的,因此将其预测作为拒绝这些理论的基础。但是,只有在某些哲学假设的情况下,该预测的推定不可接受的后果才遵循。本文制定了一种策略,以屏蔽物理理论免受Boltzmann Brains的威胁。该策略吸引了关于意识的物理基础的一种现象外部主义的形式。鉴于这种现象外部主义的形式,鲍尔茨曼大脑的增殖证明是良性的。该策略面临心理物理微调问题,但都减轻了宇宙学微调问题,即参加基于物理的解决方案来解决玻尔兹曼大脑问题,并为与时代箭头有关的解释性股息支付了解释性的股息。
抽象的介孔二氧化硅是一种出色的低密度透明材料,其特征在于定义明确的纳米孔径。它有各种形态,包括整体,纳米颗粒和电影。该材料在众多技术应用中起着关键作用,无论是独立的还是混合复合材料的组成部分,是多种无机和有机材料范围的宿主。在合成路线中,我们考虑了Sol -Gel方法,因为它在产生纳米颗粒和散装中孔二氧化硅方面取得了巨大成功。本评论的重点是探索介孔二氧化硅和介孔二氧化硅的复合材料的光学性质,并深入研究如何在各个领域中利用中孔二氧化硅内的巨大空间:热和电气绝缘,光子学,环境设备,或用于药物和生物模拟的纳米型。这项全面的检查强调了介孔二氧化硅的多方面潜力,将其定位为在各个科学领域开发创新解决方案的关键参与者。
Figure 1 Cross-sectional TEM micrographs of Fe irradiated at 475 C to (a-1) 50 peak dpa by 5 MeV Fe ions, (a-2) 50 peak dpa by 3.5 MeV ions, (a-3) 50 peak dpa by 2.5 MeV ions, (a-4) 50 peak dpa by 1 MeV ions, (b-1) 100 peak dpa by 5 MeV ions, (b-2) 100 peak DPA乘以3.5 MeV,(B-3)100峰值DPA乘以2.5 MeV,(B-4)100峰值DPA乘以1 MeV离子。箭头指示梁照射方向。红色实心曲线是SRIM计算的DPA曲线,黑色虚拟曲线是植入的Fe曲线。在每个显微照片的底部显示了表面空隙的裸露区域的宽度。