摘要 - 发电机上的恒定输出电压对于产生预期的电源非常重要。发电机的输出电压的变化受各种令人不安的因素的影响,其中之一是每分钟的负载和旋转(rpm),并不总是恒定的。因此,我们需要一种特殊的调节设备来保持发电机输出电压恒定。必须克服负载变化期间电压不稳定性的问题,以保持电压恒定,以便需要设备可以控制电压稳定性。此工具是自动电压调节器(AVR)。本研究的目的是在单相轴向发生器系统中设计电压控制装置。使用的研究方法包括3个阶段,即:1)。工具的设计和设计,2)。制造工具的阶段,3)。测试工具的阶段。当内部气隙为0.4 cm,外部0.5 cm和rpm 2589的轴向发生器时,获得了研究的结果。发电机的输出电压开始显着降低,直到达到-70伏,RPM也降至-200。相比之下,当使用AVR操作发生器时,还原仅达到-30伏。但是,当发电机使用AVR操作时,RPM的减小更大,直到达到-220。
脑机接口(BCI)可以建立大脑与外部设备之间的信息交互,从而实现对活体生物组织行为的有效控制和协调,最终实现生物智能与人工智能的完美融合。[1,2]大脑作为神经系统中最高级的部分,在多维信息处理、智能计算与决策方面具有极高的效率和极低的功耗,这主要归功于神经元之间复杂的连接。[3–7]作为大脑计算引擎的神经元通过突触紧密连接(图1 a)。在生物突触中,传递到突触前神经元的神经电刺激(动作电位)导致电压门控Ca 2 +通道的开放,导致Ca 2 +离子内流,进而诱导胞吐的发生,促进神经递质的释放到突触间隙。来自突触间隙的神经递质在突触后质膜被NMDA和AMPA受体/离子通道接收,导致离子通道的开放或关闭,最终离子内流进入突触后神经元并建立突触后电位,这表明该过程在调节突触后细胞膜电导和膜电位的快速变化中起着重要作用(图1b)。[2,7–9]在此过程中,产生动作电位时膜电位的变化可分为静息、去极化、复极化和超极化四个阶段,如图1c和表1所示。如我们所见,生物系统的实际工作电压要求约为50–120 mV(生物电压)。 [10,11] 另一方面,基于与生物神经系统高度相似的忆阻器的类脑神经形态器件研究取得了重要进展,从根本上突破了冯·诺依曼瓶颈,真正实现了存储与计算的一体化。值得注意的是,受到生物大脑高效计算、低功耗的启发,忆阻器的工作电压与生物系统所需的生物电压相匹配,可以高效地处理复杂信息并进行进一步决策,为与生命体的连接和通信奠定基础。
此外,宽 V IN 和 V OUT 充电器使工程师能够采用新技术,例如 USB Type-C™ 电源传输和太阳能充电。使用带有 MPPT 算法的宽 V IN 和 V OUT 充电器(如 BQ25756)可帮助工程师设计可在任何地方使用太阳能电池板充电的产品,同时为消费者提供快速充电体验。将 BQ25756 与 TI USB-C PD 控制器配对可消除适配器仅适用于一个设备的麻烦。通过这种配对,消费者可以利用双向充电并使用通用 USB-C 适配器为许多应用充电,包括电动工具、电动自行车和便携式电站。宽 V IN 和 V OUT 充电器可以改善客户充电体验并缩短您的开发时间。
特此证明,我于同日通过能源局电子归档系统在以下地址提交了上述动议:http://radicacion.energia.pr.gov 并送达 margarita.mercado@dlapiper.com;carlos.reyes@ecoelectrica.com;Legal@lumamc.com;wayne.stensby@lumamc.com;mario.hurtado@lumamc.com;Ashley.engbloom@lumamc.com;mgrpcorp@gmail.com, victorluisgonzalez@yahoo.com;yan.oquendo@ddec.pr.gov;aconer.pr@gmail.com;cpares@maximosolar.com;agraitfe@agraitlawpr.com;rstgo2@gmail.com;ingridmvila@gmail.com;gonzalo.rodriguez@gestampren.com;dortiz@elpuente.us; lga@elpuente.us; malu.blazquez@reimagina.pr.org; Presidente@ciapr.org; sergio.gonsales@patternenergy.com; h.bobea@fonrochepr.com; lionel.orama@upr.edu; energiaverdepr@gmail.com; manuel.mata@aes.com; obed.santos@aes.com; hrivera@oipc.pr.gov; jeff.lewis@terraform.com; cfl@mcvpr.com; fortiz@reichardescalera.com; javier.adiego@x-elio.com; hjcruz@urielrenewables.com; viviana.Harrington@sunnova.com; tara.dhimitri@longroadenergy.com; rafael.quintana@aes.com; abigail.reyes@aes.com;会计@everstreamcapital.com; Arocheleau@terraform.com; leslie@sonnedix.com; ramonluisnieves@rlnlegal.com; jczayas@landfillpr.com; auriarte@newenergypr.com; pjcleanenergy@gmail.com; javrua@gmail.com; jeanna.steele@sunrun.com; cpsmith@unidosporutuado.org;米尔德雷德@liga.coop; rodrigomasses@gmail.com; Presidente@camarapr.net; norywrivera@contructorespr.net; agc@agcpr.com; jmarvel@marvelarchitects.com 和 presidencia-secretarias@segurosmultiples.com。
Chiagozie Mbah 6 摘要 目的:本研究旨在增强射频 (RF) 能量收集的电压倍增器,重点是提高收集能量的效率。这一改进对于可持续能源应用和减少化石燃料造成的环境污染至关重要。 理论参考:射频能量收集技术正逐渐被认可为一种可行的可持续环境能量捕获方法,早期的研究主要集中在天线和电路设计上。尽管如此,能量收集的有效性仍然受到功率输出不足的限制。本研究在先前的研究基础上,直接比较了两种常用的电压倍增器,即 Cockcroft Walton 和 Dickson 倍增器,并将其应用于射频能量收集。 方法:使用 Multisim 对 Cockcroft Walton 和 Dickson 电压倍增器进行优化设计,并使用 MATLAB 分析其性能。比较是在两个频率范围内以 1V 的输入电压进行的:85 MHz – 110 MHz(FM 频段)和 1.8 GHz – 3.0 GHz(4G 频段)。记录了两个倍增器的输出电压,并在这些频带上进行了比较。结果与结论:在 FM 频带(85 MHz – 110 MHz)内输入电压为 1V 时,Dickson 电压倍增器的性能优于 Cockcroft Walton 倍增器,其输出电压为 11.1V,而 Dickson 为 6.6V。然而,在 4G 频带(1.8 GHz – 3.0 GHz)中,Cockcroft Walton 倍增器的效率更高,其最大输出电压为 5.2V,而 Dickson 为 4.1V。研究得出结论,Dickson 倍增器更适合从 FM 频带收集射频能量,而 Cockcroft Walton 倍增器更适合 4G 频带能量收集。研究意义:研究结果表明,不同的射频能量收集应用可能受益于不同的电压倍增器,具体取决于所涉及的频带。这可以指导未来旨在实现可持续能源解决方案的技术中更高效的射频能量收集电路的设计。原创性/价值:本研究直接比较了不同射频频率条件下的两个电压倍增器,为优化绿色能源应用的能量收集技术提供了宝贵的见解。研究结果有助于加深对特定射频频段高效电路设计的理解,有助于开发更有效的能量收集系统。关键词:电压倍增器、Cockcroft-Walton 电压倍增器、Dickson 电压倍增器、能量收集、射频。
• 精确的电源电压 • 有源噪声过滤 • 过流故障保护 • 级间隔离(解耦) • 从单个电源生成多个输出电压 • 适用于恒流源 图 1-2 显示了线性稳压器的几种典型应用。图 1-2(A) 显示了传统的交流到直流电源。在这里,线性稳压器执行纹波抑制、消除交流嗡嗡声和输出电压调节。电源输出电压将干净且恒定,与交流线电压变化无关。图 1-2(B) 使用低压差线性稳压器在电池放电时从电池提供恒定的输出电压。低压差稳压器非常适合此应用,因为它们可以延长给定电池的使用寿命。图 1-2(C) 显示配置为开关电源“后置稳压器的线性稳压器
电压敏感元件可防止 ESD。出色的钳位能力、低泄漏和快速响应时间可为暴露于 ESD 的设计提供一流的保护。由于尺寸小巧,它适用于手机、MP3 播放器、数码相机和许多其他电路板空间非常宝贵的便携式应用。
图 3.(左)我们打算将连接到电力线导体上的传感器模块封装用作传感器电容拾音器的一部分,以最大限度地提高其电容,从而提高灵敏度。(右)电压指的是支持固态电容传感器或 MEMS 传感设备的导体的电压。(电压值从图 2 中的 FEM 模型中获得。)请注意,在距离支撑导体相对较小的地方存在较大的电位差,并且电位差在靠近支撑导体的地方几乎呈线性变化。