由于电流流入BQ7690X上的细胞输入引脚,而平衡处于活动状态时,因此在不暂时禁用平衡的情况下无法进行细胞电压测量。因此,在平衡过程中,修改了设备的细胞电压测量和评估细胞电压保护的时机。在任何单元的平衡都处于活动状态时,在测量细胞电压以及共享插槽测量过程中,在每个ADSCAN中暂时禁用平衡FET。为了满足细胞平衡进行定期测量的需求,设置:配置:电源config [cb_loop_slow [1:0]]配置位在细胞平衡处于活动状态时修改单元电压测量时间,以增加平均平衡电流。此修改涉及替换具有相同宽度的空闲插槽所选ADSCAN中的测量值,以使平衡保持较高的时间百分比。
在 30 种经过分类的双极、BiCMOS 和 CMOS 插座式 CDM 产品中,有 27 种产品的耐压为 ≥ 500V,且未出现实际 CDM 故障。在耐压 <500V 的三种产品中,有两种在经过分析和重新设计之前,因制造原因而多次出现 CDM 故障。对这两种产品的分析表明,插座式和非插座式 CDM 测试均在实际 CDM 故障中发现的相同故障位置复制了初始电介质击穿故障机制。然而,插座式 CDM 测试始终比非插座式 CDM 测试造成更严重的损坏。在一种产品上,这导致了与插座式 CDM 和实际故障完全不同的故障模式。基于这项工作,提出了一种结合插座式和非插座式 CDM 测试的方法来分类/评估新产品并推动 CDM 稳健性的改进。
印度提供的电动汽车 (EV) 充电器种类繁多,包括交流和直流两种类型。交流充电器,例如 Bharat AC - 001、Type-2 AC 和 LEV AC (IS-17017-22-1),提供 3.3 kW 至 22 kW 的功率输出范围,支持 230V 单相至 415V 三相额定电压。直流充电器方面,Bharat DC - 001、CHAdeMO、CCS-II 和两款 LEV DC 版本(IS-17017-2-6 和 IS-17017-2-7)提供 12 kW 至 500 kW 的功率输出,额定电压为 48V 至 1000V 以上。印度政府最近批准了 LEV 充电器类型,进一步增强了基础设施。每种充电器类型都兼容各种车辆类别,包括电动两轮车、三轮车、汽车和公共汽车,反映了印度发展其电动汽车充电生态系统的综合方法。
无论条件如何,无论是否位于高环境温度环境(需要90°C的评级),以各种线路电压在120V至480V之间运行,我们的Philips家族预付了一百万镇流器的家庭都是多种应用的理想选择。
在这项研究中,研究了电动汽车的机上充电器,并提出并模拟了双向板载充电器的设计。充电器的目标将在未来建立,以在乌普萨拉大学的测试设置中使用。充电器由两个阶段组成:功率因数校正(PFC)转换器,该转换器将AC电压和电流从网格侧转换为DC,同时保持统一功率因数,而双向降压转换器,该转换器调节电池的充电电流和放电电流。该模型是使用MATLAB/SIMULINK构建的,并且使用D-Q同步参考框架来实现PFC转换器的电流控制器,而双向降压电流控制器是使用DC脉冲宽度调制构建的。使用MATLAB单输入和单个输出工具(Sisotool)调整比例和积分增益。研究了转换器的拓扑,结构和相应的数学模型,并对充电器进行了模拟并测试充电模式。在所有操作模式下,监视电池电压,电流和状态,以评估降压控制器的性能,并通过测量AC侧的电流和电压来测试PFC控制器和过滤器的功能。在各种电池电压和电流组中映射充电和放电效率,以确定充电器在不同操作条件下的性能。充电器在充电和放电模式和建议的未来工作中表现出了出色的性能,以提高双向充电系统的效率和性能。
• 规划和运营 T 电压(V > 34.5kV)的输电线,以确保所有发电设备都以安全、可靠和优质的方式连接到负载,为客户提供服务。 • 输电员工确保实时(分钟、秒)管理电压、频率和热运行极限。
一般交流驱动器布置 每个交流驱动器都包括交流市电电源和负载之间的三个主要部分。如图 1 所示。转换隔离并将市电电压更改为转换部分的电平和配置。转换部分将转换后的市电电压转换为可调电压、可调频率的交流电压,以匹配所连接负载的速度和扭矩要求。利用部分由交流电机和机械设备(如齿轮和联轴器)组成。驱动器转换部分包括直流转换、能量存储和切换。驱动器的转换部分使用半导体组合将市电电压转换为直流电压和电流。此直流电存储在电感器或电容器中,然后传递到切换部分。切换部分将存储的直流电压或电流连接到交流电机的连续相中。频率、电压和电流经过调节以满足负载的需求。
TMP12 产生一个与摄氏温度成线性比例的内部电压,标称值为 5 mV/° C。线性化输出与连接到 TMP12 的 2.5 V 精密参考电压的外部电阻分压器的电压进行比较。分压器根据用户需要设置一个或两个参考电压,提供一个或两个温度设定点。比较器输出是开集晶体管,能够吸收超过 20 mA 的电流。有一个板载滞后发生器来加速温度设定点输出转换;这也可以减少嘈杂环境中不稳定的输出转换。滞后由外部电阻链编程,并由从 2.5 V 参考电压中吸取的总电流决定。TMP12 气流传感器还包含一个精密的低温度系数 100 Ω 加热器电阻,可直接连接到外部 5 V 电源。当加热器启动时,它会使模具温度升高约 20°C
图 3-3 显示了交流电源接通后到开关开始前电压 V CC 和 V DD 的波形。在 LDO 之前有一个 RC 电路。接通电源后,电容 C1 逐渐充电。当电容 C1 充满电后,通过控制其 CONTROL 引脚信号激活 LDO。但是,MCU 高速运行所需的电流无法仅通过电阻分压电路提供。因此,在 LDO 激活后,C1 逐渐放电。为此,为了防止 V CC 降至 LDO 输入输出电压的指定电压以下,MCU 进入待机模式(以减少 MCU 电流),或切换到从辅助绕组提供电流以恢复 V CC 。在图 3-3 中,MCU 被激活并进入待机模式。然后由外部输入信号开始开关。 图 3-3 电压 V CC 和 V DD 的波形
