近年来,各个经济部门使用的高压发电技术根据应用领域和性质的不同,面临着许多要求,特别是使用寿命、环境安全、工作效率和能源效率等要求[1-7]。特别是在当今使用的具有光辐射的生物物理装置中,杀虫装置的能源需要高于~3000 V的电压,这对人类来说是安全的。在这种类型的设备中,需要交流220伏电源来产生高压。这不仅增加了能耗,还给它们的使用带来了不便。例如,考虑到在现场使用生物物理设备,将它们连接到网络需要使用与影响范围相等的连接电缆。这反过来又导致了高能耗和不便。用于放大半导体电信号的晶体管的发明使解决此类问题成为可能。如今,这种晶体管广泛应用于各个领域的电信号放大,具有节能、低成本、操作准确等特点[5-9]。在这项研究中,研究人员开发了一个用于产生安全高压的计算机模型
本文给出了由高能物理研究所设计、中国科学院微电子研究所制备的50 µm 厚低增益雪崩探测器 (LGAD) 传感器的模拟和测试结果。制备了三片晶圆,每片晶圆采用四种不同的增益层注入剂量。制备过程中采用了不同的生产工艺,包括改变 n++ 层注入能量和碳共注入。测试结果表明,从电容-电压特性来看,增益层剂量较高的 IHEP-IME 传感器具有较低的击穿电压和较高的增益层电压,这与 TCAD 模拟结果一致。Beta 测试结果表明,IHEP-IME 传感器在高压下工作时的时间分辨率优于 35ps,辐照前 IHEP-IME 传感器收集的电荷大于 15fC,满足 ATLAS HGTD 项目对传感器辐照前的要求。关键词:低增益雪崩探测器(LGAD),注入剂量,击穿电压,时间分辨率,电荷收集电子邮件地址:zhaomei@ihep.ac.cn (Mei Zhao)
在电动汽车(EV)存储系统中,通常会串联连接大量电池电池,以增强电机驾驶的输出电压。电化学特征的差异将导致电荷(SOC)和不同细胞之间的末端电压失衡。在本文中,提出了涉及电池能量管理和电动机驱动器的混合级联多级转换器。在拟议的拓扑结构中,可以控制每个电池电池以连接到电路中,也可以被半桥转换器绕过。所有半桥都级联以输出楼梯形状直流电压。然后,使用H桥转换器来更改DC总线电压的方向以组成AC电压。转换器的输出是多级电压,谐波较少,DV/DT较低,这有助于提高电动机驱动器的性能。通过单独控制每个单元的SOC,可以改善电池的能量利用率。也可以避免端子电压和SOC的不平衡,可以通过模块化的级联电路轻松实现容错的距离,因此电池堆栈的寿命将延长。模拟以验证提出的转换器的性能。
摘要 — 过去十年,碳化硅 (SiC) 功率金属氧化物半导体场效应晶体管 (MOSFET) 的商业化不断扩大。栅极氧化物可靠性是 SiC 功率 MOSFET 的主要问题,因为它决定了器件的使用寿命。在这项工作中,我们研究了商用 1.2 kV SiC 功率 MOSFET 在不同栅极电压下的栅极漏电流。高氧化物电场引发的碰撞电离和/或阳极空穴注入 (AHI) 导致空穴捕获,从而增强了栅极漏电流并降低了器件的阈值电压。由于 Fowler-Nordheim (FN) 隧穿而产生的电子注入和捕获往往会降低栅极漏电流并增加阈值电压。还对商用 MOSFET 进行了恒压时间相关电介质击穿 (TDDB) 测量。栅极漏电流的结果表明,场加速因子的变化是由于高栅极氧化物场下栅极电流/空穴捕获增强所致。因此,建议在低栅极电压下进行 TDDB 测量,以避免在正常工作栅极电压下高估寿命。
摘要 - 本文制定了具有断层乘车(FRT)功能的网格形成(GFM)逆变器的改进控制策略,以确保在断层条件下,尤其是岛状的微电网和不对称断层的微电网稳定运行。提出的控制策略包括对积极序列和负序列控制以及自适应虚拟阻抗(VI)控制的双重控制。与现有作品不同,所提出的策略仅对积极序列控制的D组分应用VI控制,并将正序控制的Q分量和负序列控制的DQ组成的Q分量为零,从而提高了稳定性,从而提高了稳定性和平衡的三相电压。VI控制的自适应特征可确保在严重断层下GFM逆变器的稳定性,这可能会导致内部电流环的饱和,如果VI不自适应,则不稳定。模拟各种不平衡断层具有高断层阻抗的结果表明,提出的控制策略可提高GFM逆变器的稳定性,并在岛的微电磁体中实现稳定且平衡的输出电压。和该算法还提高了具有高断层阻抗和低断层阻抗的平衡断层下GFM逆变器的稳定性。
计算材料科学工具生成的数据量不断增加,这推动了新机器学习模型的发明,并随后协助发现了新材料。在这里,我们提出了对数据本身的逾期质疑:它适合培训机器学习模型吗?通过检查材料项目数据集中的凸壳(E H),电子带隙和形成能数据的能量,我们发现E H是一个不稳定的数量,这是因为数据库没有足够的化学空间表示化学空间,这是计算晶体分解所必需的。E H的不稳定也适用于DFT计算的电压,因为计算的电压是从已知的阳离子不足稳定材料获得的电压的平均值。我们还显示了材料项目数据库中报告的电子带隙值的差异,并且由于分层材料的间层间距离的任意变化或找到减少在数据库中沉积值以下结构的能量的优化参数,因此形成能量数据可能会改变。我们讨论了减轻这些数据问题的可能方法。
参数 最小值 最大值 单位 输入电源电压,EN -0.3 20 V LX 电压 -0.3 20 V FB 电压 -0.3 6 V BS 电压 -0.3 23 V 存储温度范围 -65 150 °C 结温(注释 2) 160 °C 功率耗散 1000 mW 引脚温度(焊接,10 秒) 260 °C
参数 最小值 最大值 单位 输入电源电压,EN -0.3 20 V LX 电压 -0.3 20 V FB 电压 -0.3 6 V BS 电压 -0.3 23 V 存储温度范围 -65 150 °C 结温(注释 2) 160 °C 功率耗散 1000 mW 引脚温度(焊接,10 秒) 260 °C
量子点(QDs)具有窄线宽发射和可调带隙,因此在量子信息和光电子器件的开发中具有潜在价值1 – 3。尤其是胶体量子点(CQDs),它可以通过溶液处理获得,并用于光伏4 – 9、光发射10 – 14和光电检测15 – 20。上转换光电探测器将低能光子(例如红外线)转换为高能光子(例如可见光),用于红外成像(图1),而红外成像用于夜视、半导体晶圆检测、手势识别、三维成像和生物成像等应用21 – 25。然而,大多数红外光子上转换器件都是基于真空或高温沉积法22、24-33,这些方法与硅等电子材料不兼容,限制了它们在柔性电子产品中的使用。基于溶液处理材料的两端上转换光电探测器已经开发出来,但需要高开启电压并且光子对光子 (p-p) 效率低(低于 1.5%)30、34。在本文中,我们表明,通过设计电子传输层 (ETL) 可以创建两端溶液处理的红外上转换光电探测器,其总 p-p 效率为 6.5%,开启电压低至 2.5 V。我们的光电探测器的效率与外延生长半导体相当,与迄今为止报道的最高增益单片红外量子点上转换器相比,效率提高了五倍。此外,与之前的量子点上变频器相比,该器件的低开启电压降低了两倍以上。我们的器件由基于硫化铅 (PbS) QD 的光电探测器吸收层(红外)和基于硒化镉/硒化锌 (CdSe/ZnS) QD 的发光二极管 (LED) 层(可见光)堆叠而成(图 2a)。为了确保光电探测器层能够提供足够的光电流来驱动 LED 层,
