在拓扑孤子范围内,涡流已经出现了显着且通用的解决方案。他们在物理学的各个领域中发现了应用,例如超导性[1]或超导性[2]中的凝结物或粒子物理模型中的应用[3,4]。Abelian-Higgs模型是支持相对论测量涡旋的典型模型(请参阅[5,6]和其中的参考文献)。该模型描述了在过去几十年中彻底研究了量规对称性的阶段,在量规对称性被自发折断的阶段中,uð1的量规场与带电标量场之间的最小耦合,从而更深入地研究了与这类与此类别的拓扑独奏相关联的现象。研究揭示了涡流的基本方面[3,7,8],它们在散射过程中的行为[9-11]或集体坐标的应用以降低
该Molina临床政策(MCP)旨在促进利用管理过程。政策不是治疗的补充或建议;提供者完全负责该成员的诊断,治疗和临床建议。它表达了莫利纳(Molina)确定某些服务或供应是为了确定付款适当性的目的,在医学上是必要的,实验性,研究或化妆品。在医学上有必要的特定服务或供应的结论不构成涵盖该服务或供应的代表或保证(例如,将由Molina支付)特定成员。成员的福利计划确定覆盖范围 - 每个福利计划定义了涵盖哪些服务,哪些被排除在外,哪些受到美元上限或其他限制。成员及其提供者将需要咨询成员的福利计划,以确定是否存在适用于本服务或供应的任何排除或其他福利限制。如果该政策与成员的福利计划之间存在差异,则福利计划将管理。此外,可以根据州,联邦政府或医疗保险成员的适用法律要求要求承保范围。CMS的覆盖范围数据库可在CMS网站上找到。覆盖范围指令和现有国家承保范围确定(NCD)或地方覆盖范围确定(LCD)的标准将取代本MCP内容,并为所有Medicare成员提供指令。在政策批准和出版时所包含的参考文献是准确的。
The ivory lncRNA regulates seasonal color patterns in buckeye butterflies Richard A. Fandino a1 , Noah K. Brady a , Martik Chatterjee a , Jeanne M. C. McDonald a , Luca Livraghi b , Karin R. L. van der Burg a,c , Anyi Mazo-Vargas a,b , Eirene Markenscoff-Papadimitriou d ,以及康奈尔大学的生态与进化生物学系Robert D. Reed A1;伊萨卡,纽约,美国。B乔治华盛顿大学生物科学系;华盛顿特区,美利坚合众国。 c克莱姆森大学生物科学系;克莱姆森,南卡罗来纳州,美国。 d分子生物学和遗传学系,康奈尔大学;伊萨卡,纽约,美国。 1可以解决通讯:Richard A. Fandino,Robert D. Reed电子邮件:raf272@cornell.edu,robertreed@cornell.edu作者贡献:R.A.F. 和R.D.R. 设计的研究。 R.A.F.,N.K.B.,M.C.,J.M.C.M.,L.L.,K.R.L.VDB。和A.M.-V.收集和/或分析的数据。 R.A.F. 和R.D.R. 写了手稿。 E.M.-P。和R.D.R. 提供了设施,资源和资金。 竞争利益声明:作者声明没有竞争利益。 分类:生物科学:进化;遗传学;发育生物学关键词:蝴蝶翼图案,EVO-DEVO,长的非编码RNA,皮层,可塑性此PDF文件包括:B乔治华盛顿大学生物科学系;华盛顿特区,美利坚合众国。c克莱姆森大学生物科学系;克莱姆森,南卡罗来纳州,美国。d分子生物学和遗传学系,康奈尔大学;伊萨卡,纽约,美国。 1可以解决通讯:Richard A. Fandino,Robert D. Reed电子邮件:raf272@cornell.edu,robertreed@cornell.edu作者贡献:R.A.F. 和R.D.R. 设计的研究。 R.A.F.,N.K.B.,M.C.,J.M.C.M.,L.L.,K.R.L.VDB。和A.M.-V.收集和/或分析的数据。 R.A.F. 和R.D.R. 写了手稿。 E.M.-P。和R.D.R. 提供了设施,资源和资金。 竞争利益声明:作者声明没有竞争利益。 分类:生物科学:进化;遗传学;发育生物学关键词:蝴蝶翼图案,EVO-DEVO,长的非编码RNA,皮层,可塑性此PDF文件包括:d分子生物学和遗传学系,康奈尔大学;伊萨卡,纽约,美国。1可以解决通讯:Richard A. Fandino,Robert D. Reed电子邮件:raf272@cornell.edu,robertreed@cornell.edu作者贡献:R.A.F.和R.D.R.设计的研究。R.A.F.,N.K.B.,M.C.,J.M.C.M.,L.L.,K.R.L.VDB。和A.M.-V.收集和/或分析的数据。 R.A.F. 和R.D.R. 写了手稿。 E.M.-P。和R.D.R. 提供了设施,资源和资金。 竞争利益声明:作者声明没有竞争利益。 分类:生物科学:进化;遗传学;发育生物学关键词:蝴蝶翼图案,EVO-DEVO,长的非编码RNA,皮层,可塑性此PDF文件包括:R.A.F.,N.K.B.,M.C.,J.M.C.M.,L.L.,K.R.L.VDB。和A.M.-V.收集和/或分析的数据。R.A.F. 和R.D.R. 写了手稿。 E.M.-P。和R.D.R. 提供了设施,资源和资金。 竞争利益声明:作者声明没有竞争利益。 分类:生物科学:进化;遗传学;发育生物学关键词:蝴蝶翼图案,EVO-DEVO,长的非编码RNA,皮层,可塑性此PDF文件包括:R.A.F.和R.D.R.写了手稿。E.M.-P。和R.D.R. 提供了设施,资源和资金。 竞争利益声明:作者声明没有竞争利益。 分类:生物科学:进化;遗传学;发育生物学关键词:蝴蝶翼图案,EVO-DEVO,长的非编码RNA,皮层,可塑性此PDF文件包括:E.M.-P。和R.D.R.提供了设施,资源和资金。竞争利益声明:作者声明没有竞争利益。分类:生物科学:进化;遗传学;发育生物学关键词:蝴蝶翼图案,EVO-DEVO,长的非编码RNA,皮层,可塑性此PDF文件包括:
摘要。可以使用本地微生物和黑色士兵飞行(BSF)Maggot Detritivore来处理和转化粪中的绵羊固体废物。绵羊粪便中有机材料分解的结果可以是bfs maggot生物量和BSF Frass。研究涉及将绵羊粪便与牛奶加工业污泥和有机厨房废物结合在一起,并使用本地微生物分解剂和BSF Maggot碎屑进行有氧处理。这项研究旨在使用各种废料,本地细菌和真菌使用探索方法将绵羊粪便转换为BSF MAGGOT和BSF FRASS生物量。所使用的方法是探索,并且在描述性中获得了数据。从微生物分解器进行7天初始分解过程开始,加工绵羊粪便的过程持续了21天。研究表明,底物中的本土细菌和真菌为5 x 10 10 cfu/g和3 x 10 5 cfu/g。加工绵羊粪便可以减少废物量,从而减少63,87%,导致BSF Maggot生物量为1042±98.4631 g,而FRASS BSF为1084±55.8345 g。
This Policy applies to the following Fallon Health products: ☒ Fallon Medicare Plus, Fallon Medicare Plus Central (Medicare Advantage) ☒ MassHealth ACO ☒ NaviCare HMO SNP (Dual Eligible Medicare Advantage and MassHealth) ☒ NaviCare SCO (MassHealth-only) ☒ PACE (Summit Eldercare PACE, Fallon Health Weinberg PACE) ☒ Community Care (Commercial/Exchange) Prior authorization by a卢克斯特纳(Luxturna)需要法伦健康医疗总监。此事先授权与会员住院或门诊接触所需的任何事先授权分开。Medicare Advantage Fallon Health符合CMS的国家承保范围确定(NCD),在计划服务领域索赔的Medicare承包商的当地覆盖范围确定(LCD)以及适用的Medicare法规和法规在为Medicare Advantage成员确定医疗必要性时。如果在适用的Medicare法规,法规,NCDS或LCD中未完全确定覆盖标准时,Fallon Health可能会在第422.101(b)(6)(i)和(II)条所述的特定情况下创建内部覆盖标准。Medicare没有luxturna的NCD(Voretigene Neparvovec-rzyl)。Medicare具有用于玻璃体切除术的NCD(80.11)。目前,有一个支持性证据证明了与色素性视网膜炎或Leber先天性障碍症一致的一部分患者中的卢克斯特尔纳治疗,其双重性RPE65突变是致病性的。ICD-10-CM将色素性视网膜炎分为H35.52,而Leber先天性症状为H35.50。在没有医疗必要性的情况下由于玻璃体切除术手术需要将luxturna注射到视网膜下空间中,NCD 80.11,玻璃体切除术已被CMS进行更新,以适应H35.50和H35.52作为指示(H35.54不属于NCD 80.11的玻璃体切除术的适应症)。国民政府服务公司,A部分和B Medicare行政承包商在计划的服务区域具有管辖权,没有LUXTURNA的LCD(MCD Search 03/25/2024),因此该计划的临床覆盖标准适用。MassHealth Fallon Health遵循Masshealth在Masshealth确定医疗必需确定时发布的医疗必需指南。
是一种有前途的机器学习方法,用于主动流量控制(AFC),深入加固学习(DRL)已成功地用于各种情况下,例如在层状和易变的湍流条件下的固定气缸的拖动减少。但是,DRL在AFC中的当前应用仍然存在缺点,包括过度传感器使用,不清楚的搜索路径和不足的鲁棒性测试。在这项研究中,我们的目标是通过应用DRL引导的自我旋转来抑制圆柱体在锁定条件下的涡流诱导的振动(VIV)来解决这些问题。只有由圆柱体的加速度,速度和位移组成的状态空间,DRL代理就学习了一种有效的控制策略,该策略成功地抑制了99的VIV幅度。6%。通过在感觉运动提示的不同组合和灵敏度分析之间进行系统的比较,我们确定了与流动物理学相关的搜索路径的三个不同阶段,其中DRL代理会调整动作的幅度,频率和相位滞后。在确定性控制下,仅需要一点强迫来维持控制性能,并且体内频率仅受到略微影响,这表明目前的控制策略与利用锁定效应的效果不同。通过动态模式分解分析,我们观察到,在受控情况下,主导模式的增长率均为负面,表明DRL明显增强了系统稳定性。此外,涉及各种雷诺数字和上游扰动的测试证实了学习的控制策略是可靠的。最后,本研究表明,DRL能够用很少的传感器控制VIV,从而使其有效,有效,可解释和健壮。我们预计DRL可以为AFC提供一个一般框架,并对基础物理学有更深入的了解。
癌症幸存者接受治疗面临的患有动脉粥样硬化心血管疾病(CVD)的风险增加,但潜在的机制仍然难以捉摸。最近的研究表明,化学疗法可以推动衰老癌细胞获得被称为衰老相关的干性(SAS)的增殖表型。这些SAS细胞表现出增长和对癌症治疗的耐药性,从而导致疾病进展。内皮细胞(EC)衰老与包括癌症幸存者在内的动脉粥样硬化和癌症有关。癌症治疗方式可以诱导EC衰老,从而导致SAS表型的发展和随后的癌症幸存者动脉粥样硬化。因此,针对显示SAS表型的衰老EC是一种治疗该人群动脉粥样硬化CVD的治疗方法的希望。本综述旨在提供对EC中SAS诱导及其对癌症幸存者动脉粥样硬化的贡献的机械理解。我们深入研究了EC衰老的基础机制,这些机制响应于流动的流量和电离辐射,这些辐射在动脉粥样硬化和癌症中起着关键作用。关键途径,包括P90RSK/TERF2IP,TGFβR1/SMAD和BH4信号传导作为癌症治疗的潜在靶标。
本文引入了一种安全增强的混合图像加密方法,该方法采用了带环形涡旋相掩码(TVPMS)和QR分解,并带有Gyrator Transform。使用的TVPM是通过将径向希尔伯特变换(RHT)和环形区板(TZP)相结合而产生的错综复杂的相掩码。QR分解是一种数学操作,用于矩阵分解,可作为常规相截断的傅立叶变换(PTFT)方法的替代。加密系统表现出不对称性,鉴于加密和解密过程与依赖不同的安全密钥集不同。在解码系统中使用加密过程中产生的密钥来检索输入图像。系统性能通过评估均方误差,峰值信噪比,钥匙灵敏度,作物效应,相关系数,3-D网格,直方图和噪声攻击来测试。©Anita出版物。保留所有权利。
警告和预防措施中描述的不良反应反应反映了每天口服40 mg的Voranigo暴露于244例星形胶质细胞瘤或少突可胶质瘤患者的疾病进展或无法接受(NCT03343197,n = 14)和Indigo(NCT04164901,n = 167例随机患者,n = 52个跨频患者)。在接受Voranigo的244例患者中,78%暴露了6个月或更长时间,44%暴露了一年以上。在此合并的安全种群中,最常见的(≥15%)不良反应是疲劳(33%),头痛(28%),Covid-19(28%),肌肉骨骼疼痛(24%),腹泻(21%),恶心(20%)和癫痫发作(16%)。在此合并的安全人群中,最常见的(≥2%)3或4级实验室异常增加了ALT(9%),AST增加(4.8%),GGT增加(2.2%)和中性粒细胞降低(2.2%)。