1 建议皮肤科随访皮肤病变 2 GCC 应由主治肿瘤科医生发起。如果主治肿瘤科医生不在,主治团队/主治医生应发起 GCC 讨论并通知主治肿瘤科医生。应告知患者或(如果有临床指征)患者代表治疗和/或姑息治疗方案。GCC 讨论应保持一致、及时,并根据临床指征重新评估。应使用预先护理计划 (ACP) 记录来记录 GCC 讨论。请参阅 GCC 主页(仅供内部使用) 3 参见生存率 - 成人心血管筛查算法
本汇编总结了时空光学涡旋 (STOV) 结构和特性的主要物理基础。描述和表征 STOV 的一般方法基于标量近轴高斯波包模型。在此基础上,任意阶的 STOV 结构被视为时空厄米-高斯模式的叠加。这种方法能够以明确且物理透明的形式系统地表征主要的 STOV 特性。特别是,我们分析了 STOV 振幅和相位分布、它们在自由传播和光学系统中的演变、内部能量流和轨道角动量。讨论并定性解释了拓扑决定的 STOV 固有不对称性以及“能量中心”和“概率中心”之间的差异 [Phys. Rev. A 107 , L031501 (2023)]。概述了 STOV 生成和诊断方法,并简要描述了非高斯(贝塞尔型)STOV 的主要特性。最后,考虑了整个文本中接受的标量高斯模型的局限性,并揭示了可能的概括。整个演示可能有助于初步介绍与 STOV 相关的思想及其非凡的特性。
摘要近年来对结构化标量涡流束的光学手性和自旋角动量进行了深入研究。这些梁的伪内拓扑电荷ℓ造成其独特特性的原因。是由带有拓扑电荷的标量涡流梁的叠加构建的,圆柱矢量涡流梁是具有空间上不均匀极化分布的高阶庞加尔模式。在这里,我们强调了这些高阶结构梁在偏尾(弱焦点)和非顺式(紧密的聚焦)条件下的光自旋和手性密度的高度可调节和异国情调的空间分布。我们的分析理论可以在任何高阶或杂种庞加莱球体上产生每个点的自旋角动量和光学手性。表明,可调的pancharatnam拓扑电荷ℓp =(ℓa +ℓb) / 2和偏振指数m =(vector涡流梁的vortex beam的ℓb - ℓa) / 2在自定义其旋转和chir式空间分布方面起着决定性的作用。我们还提供了正确的分析方程式,以描述集中的非顺式标量贝塞尔束。
本研究旨在确定澳大利亚新南威尔士州中风幸存者生活方式行为的纵向预测因素。这项纵向研究利用了 45 岁及以上研究的基线调查(2005-2009 年)和子研究调查(2017 年)的数据。体力活动、饮酒、吸烟状况和补充剂使用被列为因变量。采用广义估计方程模型来评估因变量与人口统计和健康状况指标之间的纵向关联。参与者(n = 576)的平均年龄在基线时为 67 岁(标准差 = 9),在子研究调查时为 76 岁(标准差 = 9),其中 54.9% 为男性。纵向分析显示,中度/高度体力活动的可能性随着时间的推移显着下降,糖尿病患者的可能性较低,但受过大学教育的人的可能性较高。女性、中度/高度风险饮酒者和抑郁症患者的吸烟可能性明显较高,但补充剂使用者的可能性较低。随着时间的推移,中度/高风险饮酒的可能性显著下降,女性饮酒的可能性较低,但吸烟者饮酒的可能性较高。随着时间的推移,服用补充剂的可能性显著下降,但女性和/或哮喘患者服用补充剂的可能性较高。我们的研究结果有助于说明,许多中风幸存者可能会从进一步的支持中受益,在中风管理和长期康复过程中采取和保持健康的生活方式,这对优化他们的生活质量和成功的二级中风预防至关重要。
编写者:新斯科舍省健康癌症护理计划NSHCCP0031©2024年11月,新斯科舍省卫生局此手册仅用于教育目的。无意取代医疗保健提供者的建议或专业判断。如果您有任何疑问,请询问您的医疗保健服务。
通过使用MEGA6.0的系统发育树来构建序列的分类。通过使用诸如AutoDock的galaxysagittarius,SwisStargetPrdiction,SwisStargetPrdiction以及相关的分子对接模拟,分为蛋白质与特定代谢物/生物活性分子之间的相互作用和研究。蛋白质相互作用预测 - 通过使用Web服务器(HADDOCK,LZERD,ROSETTADOCK)的蛋白质。
人口贩运的受害儿童通常会遭受多种形式的创伤,即多重受害,包括目睹犯罪活动、战争或死亡等不良经历;因自然灾害或冲突而流离失所;失去资源和收入;遭遇暴力;缺乏教育机会;被照顾者忽视或抛弃。多重创伤的交织会导致复杂的创伤,使儿童更容易受到贩运者的剥削,例如心理控制、威胁或实际身体虐待、扣留食物、情感和性虐待等。人口贩运的受害儿童还可能经历过毒瘾、暴力和危险工作造成的伤害、强迫怀孕,以及慢性健康状况,例如出现并发症的可能性增加、躯体症状、感觉运动发育受损和手眼协调问题,这进一步加重了他们的创伤。
指挥军士长 (CSM) Axel R. Nieves-Lopez 的军事生涯长达 23 年,1981 年 8 月出生于波多黎各圣图尔塞。他于 2001 年 2 月加入美国陆军,就读于德克萨斯州拉克兰空军基地的国防语言学院 (DLI)。同年晚些时候,他参加了佐治亚州本宁堡(现称为摩尔堡)的单站单位训练,并于 2001 年 9 月以步兵身份毕业。他担任过从团队领导到一级军士的所有领导职务,担任过多个教官,并担任过海外步兵顾问。CSM Nieves-Lopez 的职务包括第 4 步兵师 (MECH) 第 2 旅第 8 步兵团第 2 营 Alpha 连布雷德利步兵车驾驶员和步枪手;第 101 空降师第 1 旅第 327 步兵团第 2 营 Alpha 连小队队长和班长;空降游骑兵训练旅第 4 营 Charlie 连游骑兵教官;第 25 步兵师第 2 斯特赖克旅第 27 步兵团第 1 营排长;美国驻巴拿马大使馆安全与合作办公室步兵顾问;一级军士,阿尔法连和总部连,第 1 营,第 6 步兵团,第 2 装甲旅,第 1 装甲师;NCOLCOE 高级领导课程辅导员,佐治亚州斯图尔特堡。最近担任第 199 步兵旅作战军士长。他曾三次部署支援伊拉克自由行动 (OIF):OIF I (2003-2004) 与第 8 步兵团第 2 营;OIF III (2005-2006) 和 OIF V (2007-2008) 与第 327 步兵团第 2 营。2014 年,他随第 1 营第 27 步兵团部署到太平洋通道,支持 PACOM 安全合作任务,参加与泰国、韩国和菲律宾军队的双边演习。CSM Nieves-Lopez 参加了专业军事教育 (PME) 系统的所有级别,包括高级领导课程 (HG)、空中突击、游骑兵、空降和探路者学校毕业生。他完成了战术认证课程、陆军基础教员课程、通用教师发展教员课程、丛林作战战术课程(澳大利亚)和丛林幸存者课程(澳大利亚)。毕业于军士长学院第 72 届。他已获得 57 个学分,获得领导力和劳动力发展学士学位。CSM Nieves-Lopez 与田纳西州克拉克斯维尔的 Brandi Marie Nieves 结婚已超过 18 年。他们有两个孩子,Elyssia 和 Mateo。他的奖章和勋章包括功绩服务奖章 2 橡树叶簇 (OLC)、陆军表彰奖章 (英勇)、陆军表彰奖章 (8 OLC)、陆军成就奖章 (5 OLC)、优良品行奖章 (第 7 次颁发)、国防服务奖章、伊拉克战役奖章 (3 战役之星)、全球反恐战争远征奖章、全球反恐战争服务奖章、韩国服务防御奖章、士官专业发展丝带 (数字 5) 陆军服务丝带、海外服务奖章 (第 5 次颁发)、战斗步兵徽章、专家步兵徽章、游骑兵徽章、跳伞员徽章、空中突击徽章、探路者徽章、智利跳伞员徽章和驾驶员徽章 (履带和轮式)。
在两个空间维度中,准长范围超导的熔化是通过涡流 - 抗抗反应对的增殖和解开,这是一种被称为Berezinskii-Kosterlitz-kosterlitz-thoubles-thouble(bkt)的现象。尽管已经在大量测量中观察到了这种过渡的特征,但是这些实验通常是复杂的,模棱两可的,无法解决涡流解开过渡的丰富物理。在这里,我们表明局部噪声磁力测定法是一种灵敏的无创探针,可以提供有关比例依赖性涡流动力学的直接信息。尤其是通过解决磁噪声的距离和温度依赖性,可以实验研究涡流气体的重新归一化组流程,并跟踪原位涡旋的发作。特别是,我们预测(i)噪声对温度的非单调依赖性和(ii)局部噪声几乎与BKT转变处的样品 - 探针距离无关。我们还表明,噪声磁力测定法可以区分高斯超导订单参数的流量与拓扑涡流闪光,并可以检测到未结合的涡流的出现。BKT过渡时的弱距离依赖性也可以用来将其与准粒子背景噪声区分开。我们的预测可能在许多非常规超导体的实验范围内。
截至 2024 年 6 月 30 日的年度报告,麻省理工学院智能探索项目 麻省理工学院智能探索项目 (The Quest) 致力于从工程角度理解智能。我们的教师、员工和学生专注于自然智能 (NI) 和人工智能 (AI) 接口的研究和应用。在过去的一年里,我们看到了工作中的重大进展;这一进展部分归功于稳定的团队、工程团队构建的研究工具的进步以及来自学院内外的更多支持。我们已向我们的任务发放了另一轮资金——跨学科研究团队,每个团队都涵盖科学和工程,每个团队都专注于特定的智能领域。最近的重大变化和里程碑包括启动感知智能任务、采取措施建立智能观测站,以及看到社区采用 Brain-Score 平台作为研究工具。已经完成了几项正在进行的招聘搜索,工作量得到了平衡。随着施瓦茨曼计算机学院 (SCC) 45 号楼的开放,我们的办公室已达到预期位置,让我们能够方便频繁地与 46 号楼和史塔特中心的同事和实验室联系。领导层和附属研究人员 James DiCarlo,Peter de Florez 系统和计算神经科学教授,是 Quest 主任;Nicholas Roy,航空航天学教授,是 MIT Quest 系统工程主任;Joshua Tenenbaum 教授是科学主任;Leslie Pack Kaelbling,电子工程和计算机科学系松下教授是研究主任;Vikash Mansinghka,首席研究科学家是建模和推理主任;Erik M. Vogan 是执行主任。大脑、心智与机器中心由 Eugene McDermoP 教授 Tomaso Poggio 共同领导。来自研究所各个实验室、中心和学术部门的研究人员参与了 Quest 赞助的研究:• 施瓦茨曼计算机学院 (SCC)、电气工程与计算机科学系 (EECS):副教授 Jacob Andreas;William Freeman,Thomas 和 Gerd Perkins 电气工程与计算机科学教授;Tomas Lozano-Perez,工程学院教学卓越教授;Mar?n Rinard 教授;Russ Tedrake,丰田教授;Leslie Kaelbling。• 计算机科学与人工智能实验室 (CSAIL):主任 Daniela Rus 以及电气工程与计算机科学 Andrew (1956) 和 Erna Viterbi 教授。• 大脑与认知科学系 (BCS):Middleton 神经科学职业发展教授 Ev Fedorenko;Ila Fiete 教授; Nancy Kanwisher,Walter A. Rosenblith 教授;Rebecca Saxe,John W. Jarve (1978) 教授,科学学院副院长;Laura Schulz,认知科学教授;副教授