背景 主动脉瓣狭窄是一种以主动脉瓣膜受限或变窄为特征的疾病,导致瓣膜功能障碍,限制血液从左心室流入主动脉和身体其他部位。如果不及时治疗,这会导致心脏负荷增加,从而导致胸痛、昏厥、呼吸急促和心力衰竭等症状。经导管主动脉瓣置换术 (TAVR) 是一种微创手术,涉及通过导管将新的人工瓣膜置入心脏。这个新瓣膜被部署来替换现有的主动脉瓣膜,在那里它扩张并接管患病瓣膜的功能,从而恢复主动脉的正常血流。问题 植入瓣膜的位置和方向直接影响血流动力学,通过影响瓣膜的流动动力学和压力梯度,从而决定心脏血液排出的效率。流动动力学和由此产生的涡流会影响主动脉壁剪切应力,可能影响植入瓣膜的结构完整性和耐久性。在规划 TAVR 手术时,患者的心脏护理团队面临着考虑多种因素的挑战,包括瓣膜选择、基于主动脉根部几何形状的定位以及优化血流动力学和确保瓣膜的长期耐用性的方向。发明:优势与应用 TAVR-AID 是一个数字孪生管道,可提供患者血流的机械模拟以及人工智能的预测功能。TAVR-AID 被设计为一种介入前决策支持工具,可帮助负责 TAVR 手术的心脏护理团队预测和减轻潜在并发症,优化瓣膜选择和放置,并根据每位患者的独特需求定制 TAVR 手术,从而加强患者护理。
直接评估患者样本在癌症治疗中具有前所未有的潜力。液体活检中的循环肿瘤细胞 (CTC) 是临床中快速发展的原发细胞来源,是实时揭示肿瘤信息的功能分析的理想候选者。然而,缺乏允许直接从液体活检样本中直接主动询问 CTC 的常规方法,这是液体活检在临床环境中转化应用的瓶颈。为了解决这个问题,我们提出了一种使用微流体涡旋辅助电穿孔系统的工作流程,该系统设计用于对从血液中纯化的 CTC 进行功能评估。通过对野生型 (HCC827 wt) 和吉非替尼耐药 (HCC827 GR6) 非小细胞肺癌 (NSCLC) 细胞进行药物反应分析来评估对该方法的验证。被困在微尺度涡旋中的 HCC827 细胞被电穿孔以依次将药物输送到细胞溶胶中。使用自动单细胞图像荧光强度算法,对两种细胞系的电穿孔条件进行了表征,以促进多种药物的递送。能够以高纯度收集掺入血液以模拟耐药 CTC 的 HCC827 GR6 细胞,表明该装置能够最大限度地减少下游敏感细胞检测的背景细胞影响。使用我们提出的工作流程,恢复吉非替尼敏感性的药物组合反映了预期的细胞毒性反应。总之,这些结果代表了一种微流体多药筛选面板工作流程,可以实现对患者 CTC 的原位功能询问,从而加速液体活检的临床标准化。
II型超导体的磁场(H) - 温度(t)相位二克由混合状态支配,只要固定涡旋[1],该状态就可以保留零耗散。在二维(2D)限制中,情况可能会大不相同,因为促进的热和量子波动破坏了导管的顺序并引起耗散。值得注意的是,在许多薄膜超导体中,在垂直磁场中观察到的有限电阻比正常状态值低得多,该磁场一直持续到零温度的极限[2-4]。这种异常金属状态(AMS)的存在与本地化缩放理论所提出的不存在2D金属性的主张相矛盾[5]。在过去的几十年中的研究导致了这样的观点,即该状态可以被视为失败的超导体[6],但其起源仍然无法解决[7-17]。高度结晶的2D超导体非常适合研究AMS,因为它们具有出色的清洁剂[18]。通常可以看到磁场诱导的超导金属转变[19-24],而低场耗散状态势必是金属的。但是,受分钟数量的限制,Crys-Talline 2D超导体中AMS的实验探针尚未超过DC传输,并且尚未进行新技术。这些结果指向玻色症Versatile probes are available for films with much larger size, revealing a particle-hole symmetry arising from uncondensed Cooper pairs based on vanishing Hall response [ 25 – 28 ], absence of cyclotron resonance mea- sured by microwave spectroscopy [ 29 ], and charge-2 e ( e is the elementary charge) quantum oscillation in nano- patterned films [ 26 , 28 ].
涡旋和束缚态是理解超导体电子特性的有效方法。最近,在新发现的 kagome 超导体 CsV3Sb5 中观察到了表面相关的涡旋核心态。虽然尖锐的零能量电导峰的空间分布看起来与来自超导狄拉克表面态的马约拉纳束缚态相似,但其起源仍然难以捉摸。在本研究中,我们利用低温扫描隧道显微镜/光谱法对两种化学掺杂的 kagome 超导体 Cs(V1xTrx)3Sb5 (Tr=Ta 或 Ti) 中的可调涡旋束缚态 (VBS) 进行了观测。与原始的 CsV3Sb5 相反,CsV3Sb5 衍生的 kagome 超导体表现出全间隙配对超导性,同时没有长程电荷序。零能量电导图表明涡旋晶格发生了场驱动的连续重新取向转变,表明存在多带超导性。Ta掺杂的CsV3Sb5表现出Caroli-de Gennes-Matricon束缚态的常规十字形空间演化,而Ti掺杂的CsV3Sb5表现出尖锐的、非分裂的零偏压电导峰(ZBCP),该峰在涡旋的长距离上持续存在。非分裂ZBCP的空间演化对表面效应和外部磁场具有鲁棒性,但与掺杂浓度有关。我们的研究揭示了多带化学掺杂CsV3Sb5系统中可调谐的VBS,并为先前报道的kagome超导体表面非量子极限条件下的Y形ZBCP提供了新的见解。2024年中国科学出版社。由爱思唯尔和中国科学出版社出版。版权所有。
早期湍流研究已得到包括压力测量在内的实验方法以及热线风速仪 (HWA) 的点测量技术的补充。使用这些侵入式方法的特殊困难包括逆流、涡流和高度湍流。此外,侵入式探头容易受到非线性(需要校准)、对多变量效应(温度、湿度等)的敏感性)以及破损等问题的影响。随着 20 世纪 60 年代中期激光的发展,非侵入式流量测量变得实用。气体激光器问世后不久,Yeh 和 Cummins 就开发了激光多普勒风速仪 (LDA)。这是流体诊断领域最重要的进步之一,因为我们现在拥有了近乎理想的传感器。具体而言,输出完全是线性的,无需校准,输出噪声低,频率响应高,速度测量独立于其他流动变量。在过去的三十年中,LDA 技术在光纤等光学方法以及先进的信号处理技术和软件开发方面取得了重大进步。此外,LDA 方法已扩展到相位多普勒技术,用于测量颗粒和气泡尺寸以及速度。激光和相机技术的快速发展为限定(流动可视化)和随后量化整个流场测量提供了可能性。使用包括第二个摄像头的改进的 PIV 系统也可以测量颗粒和气泡的尺寸。粒子图像测速 (PIV) 的发展已成为众多应用中最受欢迎的流量测量仪器之一。相机和激光技术以及 PIV 软件的现代发展继续提高 PIV 系统的性能及其对困难流量测量的适用性。除了瞬时测量流量外,现在还可以使用高频激光器和高帧率相机进行时间分辨测量。平面激光诱导荧光 (PLIF) 现已提供
y。HE,Y. Yin,M。Zech,A。Soumyanarayanan,M.M。 yee,T.L。 Williams,M.C。 Boyer,K。Chatterjee,W.D。 Wise,I。Zeljkovic,T。Kondo,T。Takeuchi,H。Ikuta,P。Sirpark,R.S。 Markiewicz,A。Bansil,E.W。 Hudson,J.E。 Hoffman•“由Fermi-Arc不稳定造成的收费订购” Science 343,390(2014)(链接)R。Comin,A。Frano,M。M. M. Yee,Y. Y. He,M。Letacon,I。Elfimov,J.E。 Hoffman,B。Keimer,G.A。 Sawatzky,A。Damascelli•“ NBSE 2中的三角形到条纹指控顺序的量子相过渡”国家科学院110,1623(2013)。 (链接)A。Soumyanarayanan,M.Yee,Y.He,J。VanWezel,D。Rahn,K。Rossnagel,E。Hudson,M。Norman,J.E. Hoffman • “Imaging the impact of single oxygen atoms on superconducting Bi 2+y Sr 2-y CaCu 2 O 8+x ” Science 337, 320 (2012) ( link ) Ilija Zeljkovic, Zhijun Xu, Jinsheng Wen, Genda Gu, R. S. Markiewicz, Jennifer E. Hoffman • “STM imaging of inversion-symmetry-breaking基于BI基层中的结构失真”自然材料11,585(2012)(链接)I。Zeljkovic,E.J。 Main,T.L。 Williams,M。C. Boyer,K。Chatterjee,W。D. Wise,Yi Yin,Martin Zech,Takeshi Kondo,T。Takeuchi,Hiroshi Ikuta,Jinsheng Wen,Zhijun Xu,G.d. Gu,Gu,E.W. Hudson,J.E。 物理。 Lett。 96,213106(2010)(链接)Jeehoon Kim,Changhyun Ko,Alex Frenzel,Shriram Ramanathan,Jennifer。 修订版 Lett。 物理。 Lett。HE,Y. Yin,M。Zech,A。Soumyanarayanan,M.M。yee,T.L。Williams,M.C。 Boyer,K。Chatterjee,W.D。 Wise,I。Zeljkovic,T。Kondo,T。Takeuchi,H。Ikuta,P。Sirpark,R.S。 Markiewicz,A。Bansil,E.W。 Hudson,J.E。 Hoffman•“由Fermi-Arc不稳定造成的收费订购” Science 343,390(2014)(链接)R。Comin,A。Frano,M。M. M. Yee,Y. Y. He,M。Letacon,I。Elfimov,J.E。 Hoffman,B。Keimer,G.A。 Sawatzky,A。Damascelli•“ NBSE 2中的三角形到条纹指控顺序的量子相过渡”国家科学院110,1623(2013)。 (链接)A。Soumyanarayanan,M.Yee,Y.He,J。VanWezel,D。Rahn,K。Rossnagel,E。Hudson,M。Norman,J.E. Hoffman • “Imaging the impact of single oxygen atoms on superconducting Bi 2+y Sr 2-y CaCu 2 O 8+x ” Science 337, 320 (2012) ( link ) Ilija Zeljkovic, Zhijun Xu, Jinsheng Wen, Genda Gu, R. S. Markiewicz, Jennifer E. Hoffman • “STM imaging of inversion-symmetry-breaking基于BI基层中的结构失真”自然材料11,585(2012)(链接)I。Zeljkovic,E.J。 Main,T.L。 Williams,M。C. Boyer,K。Chatterjee,W。D. Wise,Yi Yin,Martin Zech,Takeshi Kondo,T。Takeuchi,Hiroshi Ikuta,Jinsheng Wen,Zhijun Xu,G.d. Gu,Gu,E.W.Williams,M.C。Boyer,K。Chatterjee,W.D。Wise,I。Zeljkovic,T。Kondo,T。Takeuchi,H。Ikuta,P。Sirpark,R.S。 Markiewicz,A。Bansil,E.W。 Hudson,J.E。 Hoffman•“由Fermi-Arc不稳定造成的收费订购” Science 343,390(2014)(链接)R。Comin,A。Frano,M。M. M. Yee,Y. Y. He,M。Letacon,I。Elfimov,J.E。 Hoffman,B。Keimer,G.A。 Sawatzky,A。Damascelli•“ NBSE 2中的三角形到条纹指控顺序的量子相过渡”国家科学院110,1623(2013)。 (链接)A。Soumyanarayanan,M.Yee,Y.He,J。VanWezel,D。Rahn,K。Rossnagel,E。Hudson,M。Norman,J.E. Hoffman • “Imaging the impact of single oxygen atoms on superconducting Bi 2+y Sr 2-y CaCu 2 O 8+x ” Science 337, 320 (2012) ( link ) Ilija Zeljkovic, Zhijun Xu, Jinsheng Wen, Genda Gu, R. S. Markiewicz, Jennifer E. Hoffman • “STM imaging of inversion-symmetry-breaking基于BI基层中的结构失真”自然材料11,585(2012)(链接)I。Zeljkovic,E.J。 Main,T.L。 Williams,M。C. Boyer,K。Chatterjee,W。D. Wise,Yi Yin,Martin Zech,Takeshi Kondo,T。Takeuchi,Hiroshi Ikuta,Jinsheng Wen,Zhijun Xu,G.d. Gu,Gu,E.W.Wise,I。Zeljkovic,T。Kondo,T。Takeuchi,H。Ikuta,P。Sirpark,R.S。Markiewicz,A。Bansil,E.W。Hudson,J.E。 Hoffman•“由Fermi-Arc不稳定造成的收费订购” Science 343,390(2014)(链接)R。Comin,A。Frano,M。M. M. Yee,Y. Y. He,M。Letacon,I。Elfimov,J.E。 Hoffman,B。Keimer,G.A。 Sawatzky,A。Damascelli•“ NBSE 2中的三角形到条纹指控顺序的量子相过渡”国家科学院110,1623(2013)。 (链接)A。Soumyanarayanan,M.Yee,Y.He,J。VanWezel,D。Rahn,K。Rossnagel,E。Hudson,M。Norman,J.E. Hoffman • “Imaging the impact of single oxygen atoms on superconducting Bi 2+y Sr 2-y CaCu 2 O 8+x ” Science 337, 320 (2012) ( link ) Ilija Zeljkovic, Zhijun Xu, Jinsheng Wen, Genda Gu, R. S. Markiewicz, Jennifer E. Hoffman • “STM imaging of inversion-symmetry-breaking基于BI基层中的结构失真”自然材料11,585(2012)(链接)I。Zeljkovic,E.J。 Main,T.L。 Williams,M。C. Boyer,K。Chatterjee,W。D. Wise,Yi Yin,Martin Zech,Takeshi Kondo,T。Takeuchi,Hiroshi Ikuta,Jinsheng Wen,Zhijun Xu,G.d. Gu,Gu,E.W.Hudson,J.E。Hoffman•“由Fermi-Arc不稳定造成的收费订购” Science 343,390(2014)(链接)R。Comin,A。Frano,M。M. M. Yee,Y. Y.He,M。Letacon,I。Elfimov,J.E。 Hoffman,B。Keimer,G.A。 Sawatzky,A。Damascelli•“ NBSE 2中的三角形到条纹指控顺序的量子相过渡”国家科学院110,1623(2013)。 (链接)A。Soumyanarayanan,M.Yee,Y.He,J。VanWezel,D。Rahn,K。Rossnagel,E。Hudson,M。Norman,J.E. Hoffman • “Imaging the impact of single oxygen atoms on superconducting Bi 2+y Sr 2-y CaCu 2 O 8+x ” Science 337, 320 (2012) ( link ) Ilija Zeljkovic, Zhijun Xu, Jinsheng Wen, Genda Gu, R. S. Markiewicz, Jennifer E. Hoffman • “STM imaging of inversion-symmetry-breaking基于BI基层中的结构失真”自然材料11,585(2012)(链接)I。Zeljkovic,E.J。 Main,T.L。 Williams,M。C. Boyer,K。Chatterjee,W。D. Wise,Yi Yin,Martin Zech,Takeshi Kondo,T。Takeuchi,Hiroshi Ikuta,Jinsheng Wen,Zhijun Xu,G.d. Gu,Gu,E.W.He,M。Letacon,I。Elfimov,J.E。Hoffman,B。Keimer,G.A。 Sawatzky,A。Damascelli•“ NBSE 2中的三角形到条纹指控顺序的量子相过渡”国家科学院110,1623(2013)。 (链接)A。Soumyanarayanan,M.Yee,Y.He,J。VanWezel,D。Rahn,K。Rossnagel,E。Hudson,M。Norman,J.E. Hoffman • “Imaging the impact of single oxygen atoms on superconducting Bi 2+y Sr 2-y CaCu 2 O 8+x ” Science 337, 320 (2012) ( link ) Ilija Zeljkovic, Zhijun Xu, Jinsheng Wen, Genda Gu, R. S. Markiewicz, Jennifer E. Hoffman • “STM imaging of inversion-symmetry-breaking基于BI基层中的结构失真”自然材料11,585(2012)(链接)I。Zeljkovic,E.J。 Main,T.L。 Williams,M。C. Boyer,K。Chatterjee,W。D. Wise,Yi Yin,Martin Zech,Takeshi Kondo,T。Takeuchi,Hiroshi Ikuta,Jinsheng Wen,Zhijun Xu,G.d. Gu,Gu,E.W.Hoffman,B。Keimer,G.A。Sawatzky,A。Damascelli•“ NBSE 2中的三角形到条纹指控顺序的量子相过渡”国家科学院110,1623(2013)。(链接)A。Soumyanarayanan,M.Yee,Y.He,J。VanWezel,D。Rahn,K。Rossnagel,E。Hudson,M。Norman,J.E.Hoffman • “Imaging the impact of single oxygen atoms on superconducting Bi 2+y Sr 2-y CaCu 2 O 8+x ” Science 337, 320 (2012) ( link ) Ilija Zeljkovic, Zhijun Xu, Jinsheng Wen, Genda Gu, R. S. Markiewicz, Jennifer E. Hoffman • “STM imaging of inversion-symmetry-breaking基于BI基层中的结构失真”自然材料11,585(2012)(链接)I。Zeljkovic,E.J。Main,T.L。 Williams,M。C. Boyer,K。Chatterjee,W。D. Wise,Yi Yin,Martin Zech,Takeshi Kondo,T。Takeuchi,Hiroshi Ikuta,Jinsheng Wen,Zhijun Xu,G.d. Gu,Gu,E.W.Main,T.L。Williams,M。C. Boyer,K。Chatterjee,W。D. Wise,Yi Yin,Martin Zech,Takeshi Kondo,T。Takeuchi,Hiroshi Ikuta,Jinsheng Wen,Zhijun Xu,G.d. Gu,Gu,E.W.Hudson,J.E。 物理。 Lett。 96,213106(2010)(链接)Jeehoon Kim,Changhyun Ko,Alex Frenzel,Shriram Ramanathan,Jennifer。 修订版 Lett。 物理。 Lett。Hudson,J.E。物理。Lett。 96,213106(2010)(链接)Jeehoon Kim,Changhyun Ko,Alex Frenzel,Shriram Ramanathan,Jennifer。 修订版 Lett。 物理。 Lett。Lett。96,213106(2010)(链接)Jeehoon Kim,Changhyun Ko,Alex Frenzel,Shriram Ramanathan,Jennifer。修订版Lett。 物理。 Lett。Lett。物理。Lett。Lett。Hoffman•“对基于Fe的超导体的光谱扫描隧穿显微镜见解”有关物理进展的报告74,124513(2011)(Link)Jennifer E. Hoffman•jennifer E. Hoffman•“纳米级成像和室温下Vo 2中电阻切换中电阻切换的控制””。E. Hoffman•“超导体BAFE 1.8 CO 0.2 AS 2”的扫描隧道光谱和涡旋成像。102,097002(2009)(链接) E. Hoffman,N。C. Koshnick,E。Zeldov,D。A. Bonn,R。Liang,W。N. Hardy,K。A. Moler•“超导体中单个涡流的受控操纵” Appl。93,172514(2008)(链接)E。W. J. Straver,J。E. Hoffman,J。M. Auslaender,D。Rugar,K。A. Moler•“将原子量表电子现象与Bi 2 Sr 2 Sr 2 Sr 2 Sr 2 Sr 2 Cacu 2 Cacu 2 o 8+D”+d“自然422,592-592-592-59(2003)的原子量表电子现象与类似波的Quasi-particle相关联(2003) Simmonds,J。E. Hoffman,D.-H。 Lee,J。Orenstein,H。Eisaki,S。Uchida,J。C. Davis•“ Imaging Quasiparticle干扰BI 2 SR 2 SR 2 CACU 2 CACU 2 O 8+D” Science 297,1148-1151(2002)(Link)(Link) Lee,K。M. Lang,H。Eisaki,S。Uchida,J.C。Davis•“ Bi 2 Sr 2 Sr 2 Sr 2 Cacu 2 Cacu 2 O 8+D” Science 295,466-469(466-469(2002)(2002)(链接)J.E。Hoffman,E。W. Hudson,K。Mards, Eisaki,S。Uchida,J。C. Davis•“成像不足的BI 2 Sr 2 Sr 2 Sr 2 Cacu 2 o 8+d” Nature 415,412-416(2002)(Link)(Link)K。M. Lang,V。Madhavan,V。Madhavan,J。E. Hoffman,J。Hoffman,E。W. Hudson,H.Eissi,S。ucaki,H。ucaki,S。ucaki,S。ucaki,S。ucaki,H。eisse<。
超导射频(SRF)腔使用沿轴的电场加速颗粒[1]。加速梯度E ACC是一个关键的性能度量,因为较高的梯度缩短了给定能量所需的加速器长度。然而,最大值受腔的材料特性的约束。第一个限制因素是材料的超导式,尤其是临界较低的领域(B C 1)和过热场(B SH)[2-5]。随着E ACC的影响,峰表面磁场b 0上升,其中b 0 = ge acc,由腔设计设置为g。最初,腔仍然处于Meissner状态,但是随着场的增加,涡流渗透,导致RF损失和淬火。Meissner状态在B C 1处具有亚稳态,上限为B sh。因此,在B C 1和B sh之间的亚稳带中,最大值可实现的字段b(max)0受约束。在电子均值自由路径上均延伸,与残余电阻率比(RRR)相关。另一个限制来自材料的热稳定性。即使没有表面缺陷,例如正常情况下的残基,地形不规则或弱质体沉淀,表面电阻的指数温度依赖性r s也会产生一个反馈反馈循环[6,7]。(1/2)r S H 2 0之间的这种反馈,而所得温度上升会导致与缺陷无关的热失控,超过阈值范围,B运行。阈值B运行取决于诸如表面电阻,腔壁厚度,导热率和Kapitza电导等因素。这些基本限制B C 1,B SH和B运行可以通过使用高RRR使用高纯度niobium来增强。尽管众所周知,较高的RRR与理论领域之间的联系是众所周知的,但数十年来具有不同RRR值的腔测试的综合总结仍然不可用。此简短说明从1980年代到2020年代编译了数据[8-21],RRR值范围从30到500到
手性是一种基本的不对称性质,用来描述可与其镜像区分开来的系统,它仍然是现代科学关注的焦点 1 – 4 ,手性材料有多种应用 5 – 8 。手性拓扑结构为新一代手性材料奠定了基础,其中手性扩展到纳米和微米尺度。在胆甾型液晶中观察到了非均匀手性态、螺旋、蓝色和扭曲晶界 (TGB) 相 9、10 。Skyrmion 是矢量序参数(如磁化强度或极化密度)的手性结构,由于其在信息技术中的潜在应用,在过去十年中在磁性材料中引起了相当大的关注 11 – 13。然而,这些材料的一个显着特征是特定的非手性对称性,这种对称性由胆甾体中的非镜像对称分子或磁性系统中的反对称自旋交换所具有,从而导致 Dzyaloshinskii-Moriya 自旋相互作用。最近,据报道,将承载 skyrmion 的磁体类型扩展到没有 Dzyaloshinskii-Moriya 自旋相互作用的系统14,15。然而,在这些系统中调整 skyrmion 手性的可能性仍是一个悬而未决的问题。虽然铁电材料中不存在预定义的手性对称性,但最近发现它们具有丰富的手性拓扑激发,包括布洛赫畴壁16-19,具有 skyrmion 结构的无芯涡旋20-22,单个 skyrmion 23,24,skyrmion 晶格 25 和 Hopfion 26。铁电体的一个显著特征是,当去极化电荷 ρ = ∇⋅ P 重排以降低它们的相互作用能时,由于限制和去极化效应的特定相互作用导致自发对称性破缺,从而出现手性,导致极化发生手性扭曲。重要的是,不同的手性(“左”态和“右”态)在能量上是简并的,因此可以互相切换。然而,执行这种手性切换是一项挑战,因为可以作为控制参数的基本场具有非手性性质。我们发现,由于去极化效应会导致大量拓扑激发,因此铁电纳米点可以提供丰富的相图,并且我们证明铁电纳米点包含极化 skyr-mions。特别是,我们设计了一个系统,其中可以通过施加电场来实现相反手性之间的受控切换。
过去 50 年来,风洞已广泛应用于工业和研究领域。它们的规模和几何形状差异很大,有些大到足以容纳和测试小型飞机(例如 NASA、ATP 设施),而另一些则是用于校准小型传感器的微型气流发生器。但是,它们总是使用相同的基本技术和设计元素。同样,环境模拟器也在研究中得到广泛应用,例如在气候和行星研究中。在这里,它们在尺寸和配置上再次存在很大差异,但基本上由具有某种形式的温度控制的密封室组成 [Jensen 等人2008]。因此,在风洞和环境模拟器设计领域已成功应用了各种标准且通常是商业化的技术和施工技术。本章将概述其中一些技术和方法,以帮助研究人员或技术开发人员设计或使用环境风洞,同时也为这些研究领域的新手提供信息指南。环境模拟器和风洞的融合是基于实验室技术的自然演变,以满足重现自然界中特定物理条件的需求。虽然这种设施现在才刚刚得到充分开发,但它们有可能扩展到一个新的研究领域,这可能对我们了解气候做出重大贡献,并促进先进传感器技术的发展。本章将介绍设计和建造环境风洞的许多挑战,并提出可能的解决方案,重点放在极端陆地和火星行星条件上。此外,还将讨论许多不同的科学和工业应用。一般而言,环境风洞目前已用于测试和校准各种气象传感器,尤其是风流传感器(风速计)。风洞在土木工程和城镇规划中的应用正变得越来越普遍。在这里,通过风洞模拟和建模建筑物周围和建筑密集区域的气流可能有助于避免在大风或暴风雨期间产生高风切变和危险涡流。此类模拟还可以帮助设计和放置风力发电系统(例如风力涡轮机)。雷诺方程开发的形式化缩放定律允许进行测量,例如在较小规模的实验室风洞中,其产生与自然环境中产生的相同(或极其相似)的流动 [Monin 和 Yaglom
1. 引言 在现代交通系统中,减阻对于减少能源消耗和污染物排放至关重要。正如 Cheng 等人 [3] 所述,交通运输部门占能源预算的 25%,却排放了全球 10% 以上的温室气体。表面摩擦是造成阻力的一个重要因素,对于商用飞机来说,其总阻力中高达 55% 是由表面摩擦引起的。在过去的几年中,人们提出了各种技术来通过实验和数值方法减少表面摩擦阻力(例如 [5]、[10] 和 [14])。大多数减阻策略都侧重于壁面附近的相干结构,例如准流向涡旋 (QSV) 和速度条纹,这些结构与表面摩擦阻力密切相关。诸如喷出和扫掠等众所周知的事件都与 QSV 密切相关 [13]。最近的研究表明,可以使用相对简单的方案来控制近壁面湍流事件,从而减少表面摩擦。Choi 等人 [4] 对湍流通道流中的主动控制进行了直接数值模拟。他们发现,通过施加吹气和吸气来抵消壁面法向速度,可实现高达 25% 的壁面摩擦减少。此外,他们观察到当检测平面靠近壁面(y + ≈ 10 )时,阻力会减小,而当检测平面距离壁面较远时,阻力会显著增加。Rebbeck 和 Choi [12] 对实时对抗控制进行了风洞实验。他们研究了当使用壁面法向射流对单个扫掠事件施加对抗控制时,边界层的近壁面湍流结构如何变化。他们的结果表明,扬声器执行器产生的壁面法向射流可以有效阻挡扫掠事件期间高速流体的向壁运动。这表明,对壁面湍流进行反向控制可以减少湍流边界层的表层摩擦阻力。最近,Yu 等人 [15] 开发了一种人工智能开环控制系统,用于操纵平板上的湍流边界层,以减少摩擦阻力。边界层的特征是基于动量厚度的雷诺数 Reθ ,等于 1450。该系统由合成射流、壁线传感器和用于无监督学习最优控制律的遗传算法组成。每个合成射流(从矩形流向狭缝中喷出)的速度、频率和驱动相位都可以独立控制。通过使用
