1研究中心JülichGmbH,能源与气候研究所,德国52425; fe.klein@fz-juelich.de(F.K. ); xi.tan@fz-juelich.de(X.T。 ); janina.ertmer@t-online.de(J.E。 ); j.w.coenen@fz-juelich.de(J.W.C. ); ch.linsmeier@fz-juelich.de(c.l. ); j.gonzalez@fz-juelich.de(J.G.-J. ); m.bram@fz-juelich.de(m.b。 ); p.bittner@fz-juelich.de(p.b. ); a.reuban@fz-juelich.de(A.R.) 2等离子物理系,激光和血浆技术研究所,国家研究核大学Mephi,Kashirskoe Sh。,31,115409,俄罗斯莫斯科; ymgasparyan@mephi.ru 3材料科学与工程学院,Hefei技术大学,Hefei 230009,中国4日4000,根特大学应用物理系,9000 GHENT,BELGIUM 5,BELGIUM 5,WISCONSIN -WISCONSIN-麦迪逊大学 - 麦迪逊大学 - 麦迪逊大学 - 麦迪逊大学,美国6号WI 53706,美国6研究中心,美国6研究中心JülichGmbH,中央工程学院,电子与分析学院,德国52425Jülich; i.povstugar@fz-juelich.de 7不同的基础能源研究机构,荷兰20,5612 AJ Eindhoven; t.w.morgan@differ 8材料科学系,核物理与工程研究所,国家研究核大学Mephi,Kashirskoe sh。,31,115409,俄罗斯莫斯科; absuchkov@mephi.ru(a.s.); dmbachurina@mephi.ru(d.b.) 9 CCFE,英国原子能管理局,库勒姆科学中心,阿宾登OX14 3DB,英国; duc.nguyen@ukaea.uk(D.N.-M。); mark.gilbert@ukaea.uk(M.G。) 10材料科学与工程学院,华沙技术大学,沃斯卡141,02-507华沙,波兰; damian.sobieraj.dokt@pw.edu.pl(D.S.1研究中心JülichGmbH,能源与气候研究所,德国52425; fe.klein@fz-juelich.de(F.K.); xi.tan@fz-juelich.de(X.T。); janina.ertmer@t-online.de(J.E。); j.w.coenen@fz-juelich.de(J.W.C.); ch.linsmeier@fz-juelich.de(c.l.); j.gonzalez@fz-juelich.de(J.G.-J.); m.bram@fz-juelich.de(m.b。); p.bittner@fz-juelich.de(p.b.); a.reuban@fz-juelich.de(A.R.)2等离子物理系,激光和血浆技术研究所,国家研究核大学Mephi,Kashirskoe Sh。,31,115409,俄罗斯莫斯科; ymgasparyan@mephi.ru 3材料科学与工程学院,Hefei技术大学,Hefei 230009,中国4日4000,根特大学应用物理系,9000 GHENT,BELGIUM 5,BELGIUM 5,WISCONSIN -WISCONSIN-麦迪逊大学 - 麦迪逊大学 - 麦迪逊大学 - 麦迪逊大学,美国6号WI 53706,美国6研究中心,美国6研究中心JülichGmbH,中央工程学院,电子与分析学院,德国52425Jülich; i.povstugar@fz-juelich.de 7不同的基础能源研究机构,荷兰20,5612 AJ Eindhoven; t.w.morgan@differ 8材料科学系,核物理与工程研究所,国家研究核大学Mephi,Kashirskoe sh。,31,115409,俄罗斯莫斯科; absuchkov@mephi.ru(a.s.); dmbachurina@mephi.ru(d.b.) 9 CCFE,英国原子能管理局,库勒姆科学中心,阿宾登OX14 3DB,英国; duc.nguyen@ukaea.uk(D.N.-M。); mark.gilbert@ukaea.uk(M.G。) 10材料科学与工程学院,华沙技术大学,沃斯卡141,02-507华沙,波兰; damian.sobieraj.dokt@pw.edu.pl(D.S.2等离子物理系,激光和血浆技术研究所,国家研究核大学Mephi,Kashirskoe Sh。,31,115409,俄罗斯莫斯科; ymgasparyan@mephi.ru 3材料科学与工程学院,Hefei技术大学,Hefei 230009,中国4日4000,根特大学应用物理系,9000 GHENT,BELGIUM 5,BELGIUM 5,WISCONSIN -WISCONSIN-麦迪逊大学 - 麦迪逊大学 - 麦迪逊大学 - 麦迪逊大学,美国6号WI 53706,美国6研究中心,美国6研究中心JülichGmbH,中央工程学院,电子与分析学院,德国52425Jülich; i.povstugar@fz-juelich.de 7不同的基础能源研究机构,荷兰20,5612 AJ Eindhoven; t.w.morgan@differ 8材料科学系,核物理与工程研究所,国家研究核大学Mephi,Kashirskoe sh。,31,115409,俄罗斯莫斯科; absuchkov@mephi.ru(a.s.); dmbachurina@mephi.ru(d.b.)9 CCFE,英国原子能管理局,库勒姆科学中心,阿宾登OX14 3DB,英国; duc.nguyen@ukaea.uk(D.N.-M。); mark.gilbert@ukaea.uk(M.G。)10材料科学与工程学院,华沙技术大学,沃斯卡141,02-507华沙,波兰; damian.sobieraj.dokt@pw.edu.pl(D.S.); Jan.wrobel@pw.edu.pl(J.S.W。)11材料公墓部,Poritary和Madrid Portarity Universal,C/Angure 3,E28040,西班牙马德里; Elena.tejad@upm.es 12等离子体研究所13 Group,Maltose-Str。,57482 Wend,德国; zoz@zoz.de(H.Z.); benz@zoz.de(H.U.B.)*校正:a.lidnovsky@fz-julik.de
界面裁缝对于钙钛矿太阳能电池(PSC)的效率和稳定性至关重要。报告的界面工程主要集中在能级转弯和陷阱状态钝化上,以改善PSC的光伏性能。在这篇综述中,根据材料界面的电子转移机制的基础进行了分子修饰。对能量水平修改和陷阱钝化的深入分析,以及接口调整中采用的通用密度功能理论(DFT)方法。此外,还讨论了通过界面工程来解决环境保护和大规模迷你模型制造的策略。本评论可以指导研究人员了解界面工程,以设计有效,稳定和环保PSC的接口材料。
钙钛矿纳米晶体(NC)(例如用于量子应用的CSPBBR 3)的兴趣正在迅速提高,因为已经证明它们可以表现为非常有效的单个光子发射器。在这种情况下要解决的主要问题是它们在操作激发下的光稳定性。在本文中,我们对高度有效的钙钛矿纳米纸的光学和量子性质进行了完整分析,该纳米蛋白含有已建立的方法,该方法是第一次生产量子发射的方法,并证明可确保增加光合稳定性。这些发射器与强烈的光子抗挑战一起表现出减少的眨眼。非常明显的是,这些特征几乎不会被激发强度的增加远高于发射饱和水平。最后,我们第一次实现了单个钙钛矿纳米管与锥形操作的纳米纤维的耦合,以旨在实现紧凑的集成单光子源以实现未来的影响。
材料和方法是一项双盲,随机标准对照临床试验。这项研究期限为一年半(从2024年1月至2025年6月)。这些受试者将从圣雄甘地·阿育吠陀学院,医院和研究中心,萨洛德(H),印度马哈拉施特拉邦,印度马哈拉施特拉邦和特殊营地中选拔。获得了IEC的圣雄甘地艾尔维德学院,Salod(H)的医院和研究中心,Wardha已获得(MGACHRC/IEC/SEP- 2023/734)和临床试验登记册(CTRI)注册。 (CTRI // 2023/22/060756)。 在每位患者获得书面知情同意书后将招募患者。 在整个研究中,每个患者的机密性都将被保留。获得了IEC的圣雄甘地艾尔维德学院,Salod(H)的医院和研究中心,Wardha已获得(MGACHRC/IEC/SEP- 2023/734)和临床试验登记册(CTRI)注册。(CTRI // 2023/22/060756)。在每位患者获得书面知情同意书后将招募患者。在整个研究中,每个患者的机密性都将被保留。
标题:1自体造血干细胞移植的有效性与2 fingolimod,natalizumab和ocrelizumab在高度活跃的复发多个3个硬化症4 5作者(限制为50位作者)中:6 Tomas Kalincik,MD,MD,MD,Phd 1,2; Sifat Sharmin,博士1,2; Izanne Roos,MBCHB,博士1,2; Mark S.7 Freedman,医学博士3;哈罗德·阿特金斯(Harold Atkins),医学博士4;约阿希姆·伯曼(Joachim Burman),医学博士,博士5;詹妮弗·梅西(Jennifer Massey),MBBS,8博士6,7;伊恩·萨顿(Ian Sutton),MBBS,博士6,8;芭芭拉·威瑟斯(Barbara Withers),医学博士,博士9,7;理查德·麦克唐纳(Richard MacDonell),医学博士,9博士10,11;医学博士Andrew Grigg博士12,11; ØivindTorkildsen,医学博士,博士13; Lars Bo,医学博士,博士13; 10 Anne Kristine Lehmann,医学博士,博士14;伊娃·库巴拉·哈夫多瓦(Eva Kubala Havrdova),医学博士15;伊娃·克拉苏洛娃(Eva Krasulova),医学博士,11博士学位15; Marek Trneny,医学博士,博士16;托马斯·科扎克(Tomas Kozak),医学博士,博士17; Anneke van der Walt,MBBS,12博士18,19; Helmut Butzkueven,MBBS,博士18,19; Pamela McCombe,MBBS 20,21; Olga Skibina,13 Mbbs 22,23,18; Jeannette Lechner-Scott,医学博士,博士24,25;芭芭拉·威尔肯斯(Barbara Willekens),医学博士,博士26,27; 14 Elisabetta Cartechini,医学博士28; Serkan Ozakbas,医学博士29; Raed Alroughani,医学博士30;詹斯·库尔(Jens Kuhle),15 MD,博士学位31;弗朗切斯科·帕蒂(Francesco Patti),医学博士32;,33;皮埃尔·杜奎特(Pierre Duquette),医学博士34;医学博士Alessandra Lugaresi,16 PhD 35,36;萨米亚·J·库里(Samia J. Khoury),医学博士,博士37; Mark Slee,医学博士,博士38; Recai Turkoglu,医学博士39; 17 Suzanne Hodgkinson,医学博士40; Nevin John,医学博士,博士41,42; Davide Maimone,医学博士43; Maria Jose 18 SA,MD 44;文森特·范·佩奇(Vincent van Pesch),医学博士,博士45,46;奥利弗·格拉赫(Oliver Gerlach),医学博士,博士47,48; Guy Laureys,19 MD 49; Liesbeth van Hijfte,医学博士49; Rana Karabudak,医学博士50; Daniele Spitaleri,医学博士51; Tunde 20 Csepany,医学博士,博士52; Riadh Gouider,MD 53,54; Tamara Castillo-Triviño,医学博士55;布鲁斯·泰勒(Bruce Taylor),21 MD,博士64,65; 22 Basil Sharrack,医学博士,博士56;约翰·A·斯诺登(John A Snowden),医学博士,博士57 23代表MSBASE作者和MSBASE合作者。24 25 MSBASE作者将在小组作者身份中列出:26 Saloua Mrabet,MD 53,54;贾斯汀·加伯(Justin Garber),MBBS 58; Jose Luis Sanchez-Menoyo,医学博士59; Eduardo 27 Aguera-Morales,MD 60; Yolanda Blanco,医学博士61; Abdullah al-Asmi,MD 62; Bianca Weinstock-28 Guttman,MD 63; Yara Fragoso,MD 66; Koen de Gans,MD 67; Allan Kermode,医学博士,博士68,69 29 30 31 32隶属关系:33 1,神经免疫学中心,皇家墨尔本皇家墨尔本医院神经病学系,澳大利亚墨尔本34号,澳大利亚墨尔本34 34,Core 35 2,核心医学系,墨尔本大学,墨尔本大学,墨尔本大学,澳大利亚澳大利亚澳大利亚墨尔本大学,澳大利亚36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 3 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 3 36 36 36 3 36 36 36 3 36 36 33 3 33,医学院3. 4,渥太华医院研究所,渥太华大学,渥太华,加拿大39 5。医学科学系,神经病学,乌普萨拉大学,乌普萨拉,瑞典40 6。澳大利亚悉尼圣文森特医院悉尼神经病学系41 7。St Vincent的临床学校,新南威尔士大学,澳大利亚悉尼42 8。 悉尼大学,澳大利亚悉尼43 9。 血液学系,澳大利亚悉尼圣文森特医院悉尼44 10。 澳大利亚墨尔本奥斯汀健康神经病学系45 11。 墨尔本大学,澳大利亚墨尔本46 12。 血液学系,奥斯汀健康,澳大利亚墨尔本47 13。 挪威卑尔根卑尔根大学医院神经病学系48 14。 挪威卑尔根北汉氏大学医院血液学系49 15。 血液学系,布拉格查尔斯大学第一学院和捷克共和国布拉格普拉格通用大学医院52St Vincent的临床学校,新南威尔士大学,澳大利亚悉尼42 8。悉尼大学,澳大利亚悉尼43 9。血液学系,澳大利亚悉尼圣文森特医院悉尼44 10。澳大利亚墨尔本奥斯汀健康神经病学系45 11。墨尔本大学,澳大利亚墨尔本46 12。血液学系,奥斯汀健康,澳大利亚墨尔本47 13。挪威卑尔根卑尔根大学医院神经病学系48 14。挪威卑尔根北汉氏大学医院血液学系49 15。血液学系,布拉格查尔斯大学第一学院和捷克共和国布拉格普拉格通用大学医院52神经病学系和临床神经科学中心,捷克共和国布拉格的布拉格50号医学院第一院
*美国人口普查局。eva.lyubich@census.gov。本文表达的任何意见和结论都是作者的观点,并不代表美国人口普查局的观点。人口普查局的披露审查委员会和避免公开避免官员已审查了该数据产品,以未经授权披露一致的信息,并批准了适用于此版本的披露避免惯例(CBDRB-FY24-CES014-CES014-014-016,CBDRB-FY24-CES DRBBDRBDRB,以及CBDRB-FY24-CES014-FY24-CBDRB,以及CBBDRB-FY24-CBDY5,以及017)。我感谢Reed Walker,Pat Kline,Emmanuel Saez和Joe Shapiro在整个工作中的指导和支持。我还要感谢编辑和三名匿名裁判的建设性反馈。本文从艾伦·奥尔巴赫(Alan Auerbach),玛蒂尔德·庞巴迪(Matilde Bombardini),斯蒂芬妮·邦德斯(Stephanie Bonds),斯蒂芬妮·邦德斯(Stephanie Bonds),塞维林·鲍伦斯坦(Severin Borenstein),戴维·卡卡(David Card),卢卡斯·戴维斯(David),卢卡斯·戴维斯(Lucas Davis),卡尔·邓克尔·维尔纳(Karl Dunkle Werner),本·法布尔(Ben Faber),梅雷德·福尔里(Ben Faber),梅雷德迪思·福利AndrésRodríguez-clare,Ra i Qa a a Qaile Saggio,Jim Sallee,Elif Tasar,Danny Yagan,Katherine Wagner,Randall Walsh,Chris Walters,Chris Walters和California of California of California of Berkeley,伯克利分校的研讨会参与者。我感谢国家科学基金会研究生研究奖学金计划(DGE 1752814),伯克利机会实验室和史密斯·理查森基金会以及华盛顿公平增长中心的财务支持中心。这项研究中使用的数据收集部分得到了美国国立卫生研究院的资助号R01 HD069609和R01 AG040213,以及国家科学基金会根据奖励编号SES 1157698和1623684。我感谢Matt Mullins的编辑帮助。
2单晶薄膜合成10 2.1底物上的薄膜生长。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 2.1.1空间有限生长-SLG。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 2.1.2空化引发了不对法的结晶-CTAC(97)。。。。。。。。。。。。。。。。12 2.1.3外延生长。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12 2.1.4转换方法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12 2.2独立的薄膜。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 2.2.1表面张力控制的ITC(98)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 2.2.2来自散装晶体。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 13 2.3图案薄膜和晶体阵列。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 13 2.3.1构造的生长。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。13 2.2.2来自散装晶体。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 2.3图案薄膜和晶体阵列。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 2.3.1构造的生长。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>14 2.3.22222外延生长。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>15 2.3.3打印。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>16 2.4生长方法的摘要。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。17
摘要 - Quantum Internet需要确保及时提供涉及分布式量子计算或传感的任务中的纠缠量子。这是通过优化量子网络的上流方法来解决的[21],其中在接收任务之前分发了纠缠。任务到达后,所需的纠缠状态将通过本地操作和经典交流达到。纠缠前的分布应旨在最大程度地减少所用量子的数量,因为这降低了矫正性的风险,从而降低了纠缠状态的降解。优化的量子网络考虑了多跳光网络,在这项工作中,我们正在用卫星辅助纠缠分布(SED)补充它。动机是卫星可以捷径拓扑,并将纠缠放在两个没有通过光网络直接连接的节点。我们设计了一种用SED纠缠纠缠的算法,这导致纠缠前分布中使用的量子数量减少。数值结果表明,SED可以显着提高小量子网络的性能,而纠缠共享约束(EC)对于大型网络至关重要。索引条款 - Quantum网络,自上而下的纠缠段,卫星辅助纠缠分布
无论吸烟习惯如何,这种性别差异在牙周炎期间在龈下微环境水平上尤为明显,龈下微环境是与宿主免疫系统积极交互的部位。这种微菌群失调可能会对免疫产生影响的假设得到了疾病和女性特异性免疫系统激活的证据的支持,就牙周炎女性特有的牙周细菌特异性抗体而言。