摘要:从历史上看,精油 (Eos) 的应用方式多种多样,现代科学证实了其抗菌、抗氧化、抗炎和神经保护特性。牛至 (Origanum vulgare) 是精油的重要来源,尤其富含百里酚、香芹酚和 β-石竹烯等化合物,这些化合物有助于其发挥强大的抗菌作用。这些作用包括破坏细菌细胞膜、干扰群体感应和抑制生物膜形成。牛至精油对抗生素耐药和非耐药菌株均有效,例如大肠杆菌、金黄色葡萄球菌和铜绿假单胞菌。这种精油的成分会破坏膜完整性、离子转运、膜表面电荷、生物膜形成和其他生物物理参数,最终导致细胞死亡。研究强调了它在对抗抗生素耐药性方面的潜力,无论是单独使用还是与传统抗生素协同使用。此外,牛至精油有望成为一种天然治疗剂。继续研究其复杂的化学相互作用将进一步阐明其在抗菌治疗中的全部潜力。这篇综述文章介绍了牛至精油抗菌作用的可能机制及其应用前景。
角质层是覆盖地上植物器官的保护层。我们研究了蜡在建立大麦 ( Hordeum vulgare ) 角质层屏障中的作用。大麦蜡质突变体 cer-za.227 和 cer-ye.267 显示蜡负荷减少,但受影响的基因以及蜡变化对屏障功能的影响仍然未知。测量了 cer-za.227 和 cer-ye.267 中的角质层蜡和通透性。通过批量分离 RNA 测序分离突变体基因座。通过基因组编辑产生了新的 cer-za 等位基因。CER-ZA 蛋白在酵母和拟南芥 cer4-3 中表达后进行了表征。Cer-za.227 携带编码酰基辅酶 A 还原酶 (FAR1) 的 HORVU5Hr1G089230 的突变。 cer-ye.267 突变位于编码 b -酮脂酰辅酶 A 合酶 (KAS1) 的 HORVU4Hr1G063420 上,与 cer-zh.54 等位。cer-ye.267 中角质层内蜡质含量明显减少。cer-za.227 的角质层失水和通透性与野生型 (WT) 相似,但在 cer-ye.267 中则有所增加。去除角质层外蜡质表明,调节角质层蒸腾作用需要角质层内蜡质,而不是角质层外蜡质。cer-za.227 和 cer-ye.267 之间角质层内蜡质含量的差异减少以及角质层外蜡质的去除表明,角质层屏障功能主要依赖于角质层内蜡质的存在。
摘要 绿色革命基于赤霉素 (GA) 激素系统的遗传改造,通过“矮化”基因突变降低 GA 信号,使植物矮化,从而使植物适应现代农业条件。矮化的强 GA 相关突变体往往胚芽鞘长度缩短,由于干旱条件下幼苗出苗效果不佳,导致产量降低。这里我们提出赤霉素 (GA) 3-氧化酶 1 (GA3ox1) 作为大麦的另一种半矮化基因,它既能最佳地降低植物高度,又不限制胚芽鞘和幼苗的生长。通过对大量大麦种质进行大规模田间试验,我们发现天然的 GA3ox1 单倍型可适度降低植物高度 5 – 10 厘米。我们使用 CRISPR/Cas9 技术,生成了几个新的 GA3ox1 突变体并验证了 GA3ox1 的功能。我们发现,改变 GA3ox1 活性会改变活性 GA 异构体的水平,从而使胚芽鞘长度平均增加 8.2 毫米,这可以为在气候变化下保持产量提供必要的适应性。我们发现 CRISPR/Cas9 诱导的 GA3ox1 突变将种子休眠期增加到理想水平,这可能有利于麦芽行业。我们得出结论,选择 HvGA3ox1 等位基因为开发具有最佳身高、更长胚芽鞘和额外农艺性状的大麦品种提供了新的机会。
总结绿色革命是基于gibberellin(GA)激素系统的遗传修饰,其基因突变降低了GA信号,赋予了较短的身材,从而使植物适应现代农业条件。具有较短身材的强大GA相关突变体通常会降低鞘总序长度,因此由于干旱条件下的幼苗出现而产生的折现收益率增长。在这里,我们将Gibberellin(GA)3-氧化酶1(GA3OX1)作为大麦的替代半弱基因,它结合了植物高度的最佳降低,而无需限制了红细胞和幼苗的生长。使用大型大麦加入收集的大型领域试验,我们表明天然的Ga3ox1单倍型将植物高度适中降低5-10厘米。我们使用了CRISPR/CAS9技术,生成了几种新型GA3OX1突变体,并验证了GA3OX1的功能。我们表明,改变的GA3OX1活性改变了活性GA同工型的水平,因此,鞘总成长度平均增加了8.2 mm,这可以提供必不可少的适应性以在气候变化下保持产量。我们透露,CRISPR/CAS9诱导的GA3OX1突变将种子休眠增加到理想水平,这可能会使麦芽产业有益。我们得出的结论是,选择HVGA3OX1等位基因为开发具有最佳身材,更长的鞘翅目和其他农艺特征的大麦品种提供了新的机会。
在食品工业中,微生物污染构成了一个巨大的挑战。用于消毒的化学物质会损害食品安全和健康。迫切需要有效的安全消毒剂来抑制农业和食品中的病原体。在这种情况下,我们调查了在与大肠杆菌,金黄色葡萄球菌和白色念珠菌作为自然的消毒剂候选者的斗争中,使用foeniculum vulgare甲醇提取物(ME)的可能性。通过GC-MS分析了F. vulgare me的组件。肉汤微稀释法和表面消毒试验分别用于抗菌活性和对数抑制作用。主要物质是苯甲烷(50.44%),雌激素(13.59%)和苯甲酸(13.58%)。金黄色葡萄球菌和白色念珠菌的F. vulgare的最小氮浓度(MIC)为0.1 g/ml,而大肠杆菌的最小浓度为0.1 g/ml。在表面消毒试验中,研究了大肠杆菌,金黄色葡萄球菌和白色念珠菌的存活率,暴露于F. vulgare消毒剂(F-SAN:10%),F。vulgare的50、100和150 µL的F. vulgare导致大肠条件下的大肠杆菌减少了几乎8-LOG(0.3 g/ml BSA)。在金黄色葡萄球菌中,150 µl的F. vulgare分别在清洁和脏表面(3 g/mL BSA)中造成约4.8和4.7对数。最高的菌落降低是在两种环境中降低˃4.93对数的白色念珠菌中。结果表明,F. vulgare甲醇提取物可能是针对病原体的强大自然消毒剂。
印度是世界贸易组织(WTO)的签署人,该组织成立于1995年1月。关于关税和贸易(GATT)的一般协议(GATT)将农业承认为投资和利润的规则结合的企业,并将其纳入乌拉圭回合(1986-1994)的首次谈判中。印度成为1994年知识产权权利协议(TRIP)(TRIPS)与贸易相关的方面的签署人,这是必要的。本协议的第27.3(b)条要求成员国通过专利或有效的SUI通用系统或其任何组合来保护植物品种。1970年现行的《印度专利法》排除了专利性的农业和园艺生产方法。在2001年,在实现育种者,农民和当地社区的权利方面发生了重大发展。印度政府通过了对植物品种和农民权利法(PPV&FR)的保护。为保护植物品种的Sui Generis系统是开发了整合育种者,农民和乡村社区的权利,并照顾了公平分享福利的担忧。与在不同国家存在或制定的其他类似立法相比,它在受保护的属/物种,水平和保护期方面具有灵活性。该法案涵盖除微生物以外的所有类别的植物。目的是通过有效的SUI通用系统提供有效的植物品种保护系统。该行为的目标是:
