大麦(Hordeum vulgare)是最广泛的谷物作物之一,具有5.1GBP的大基因组。通过各种国际合作,该基因组最近通过利用可用的遗传资源和基因组资源进行了对染色体规模进行审查和组装。在世界范围内收集并保存了许多野生和耕种的大麦配件。这些加入对于获得多种自然和诱发的大麦变种至关重要。Barley Bioresource项目旨在根据纯化的种子和大量收集的加入的DNA样品研究该作物的多样性。该项目的长期目标是为全球主要的大麦加入的基因组序列提供基因组序列。鉴于技术局限性,已经采用了一种策略来建立选定数量的加入的外显结构,并对几个主要代表物的基因组进行高质量的染色体规模组装。对于未来项目,有效的注释管道对于确定基因组和基因的功能以及将此信息用于基于序列的数字大麦育种至关重要。在本文中,作者审查了现有的大麦资源及其应用程序,并讨论了大麦基因组学研究的未来方向。
下午12:00-1:00 午餐会议1-主席:劳拉·阿姆布鲁斯(Laura Armbruster)1:30 - 下午2:15 Alain Tissier,IPB Halle从淘汰赛到淘汰赛:Cas-Exo技术在植物繁殖中的应用2:15 - 3:00凯瑟琳·韦佩尔(Kathrin Wippel咖啡休息时间2-主席:Stanislav Kopriva 3:30 - 下午3:45 Nina Trubanova,都柏林大学学院特定于基因组特定协会研究(GSAS),用于探索大麻3:45 - 4:00 pm的变异性。 Tracyline Jayo Manyasi,内罗毕大学的护理点诊断,莫桑比克的香蕉镰刀木枯萎病4:00 - 4:15 Alessandra Renella,莫利斯大学的代谢组学表征,来自意大利阿皮宁地区的自动扁豆生态型3-主席:Gabriel Oliveira Ragazzo 4:15 - 5:00 Stefan Heckmann,IPK Gatersleben朝着大麦(Hordeum vulgare)的减数分裂重组,下午5:00 - 5:45 Nicolaus von Wiren,IPK Gatersleben氮营养作为根可塑性的多功能因素6:15 - 7:30 pm。晚餐7:30 - 晚上9:00海报会议i下午12:00-1:00午餐会议1-主席:劳拉·阿姆布鲁斯(Laura Armbruster)1:30 - 下午2:15 Alain Tissier,IPB Halle从淘汰赛到淘汰赛:Cas-Exo技术在植物繁殖中的应用2:15 - 3:00凯瑟琳·韦佩尔(Kathrin Wippel咖啡休息时间2-主席:Stanislav Kopriva 3:30 - 下午3:45 Nina Trubanova,都柏林大学学院特定于基因组特定协会研究(GSAS),用于探索大麻3:45 - 4:00 pm的变异性。 Tracyline Jayo Manyasi,内罗毕大学的护理点诊断,莫桑比克的香蕉镰刀木枯萎病4:00 - 4:15 Alessandra Renella,莫利斯大学的代谢组学表征,来自意大利阿皮宁地区的自动扁豆生态型3-主席:Gabriel Oliveira Ragazzo 4:15 - 5:00 Stefan Heckmann,IPK Gatersleben朝着大麦(Hordeum vulgare)的减数分裂重组,下午5:00 - 5:45 Nicolaus von Wiren,IPK Gatersleben氮营养作为根可塑性的多功能因素6:15 - 7:30 pm。晚餐7:30 - 晚上9:00海报会议i
5 Arish University,植物生产系环境农业科学学院(遗传分支),El-Arish 45511,埃及; dabdelmoniem@aru.edu.eg摘要抽象摘要摘要摘要生锈真菌是毁灭性的植物病原体,几种puccinia物种对全球大麦种植产生了重大财务影响。 杀菌剂大规模使用,用作对抗植物致病真菌的有效方法。 杀菌剂的负面影响每天都在稳步上升。 因此,研究人员目前正在探索减轻杀菌剂使用(例如植物提取物利用)的替代方法。 由于掺入天然抗真菌物质,该方法已被证明有效。 在测试的九个自然引起者中,植物提取物上的应用在大麦幼苗上的应用导致hordei的孵化和潜在时期增加。 这些时期是部分和诱导的耐药性的组成部分,有效地减轻了成熟植物的大麦叶锈病的发生率超过70%。 同样,生化分析在所有测试处理的总体酚类和氧化酶活性(过氧化物酶和多酚氧化酶)中表现出显着的增强。 随机扩增多态性DNA(SCOT)测试是评估植物提取物和微生物对大麦植物的影响的可行方法。 关键字:关键字:关键字:关键字:hordeum vulgare;叶锈; puccinia hordei;诱导的电阻;植物提取物;苏格兰人;多酚氧化酶(PPO);过氧化物酶(POX);总酚类5 Arish University,植物生产系环境农业科学学院(遗传分支),El-Arish 45511,埃及; dabdelmoniem@aru.edu.eg摘要抽象摘要摘要摘要生锈真菌是毁灭性的植物病原体,几种puccinia物种对全球大麦种植产生了重大财务影响。杀菌剂大规模使用,用作对抗植物致病真菌的有效方法。杀菌剂的负面影响每天都在稳步上升。因此,研究人员目前正在探索减轻杀菌剂使用(例如植物提取物利用)的替代方法。由于掺入天然抗真菌物质,该方法已被证明有效。在测试的九个自然引起者中,植物提取物上的应用在大麦幼苗上的应用导致hordei的孵化和潜在时期增加。这些时期是部分和诱导的耐药性的组成部分,有效地减轻了成熟植物的大麦叶锈病的发生率超过70%。同样,生化分析在所有测试处理的总体酚类和氧化酶活性(过氧化物酶和多酚氧化酶)中表现出显着的增强。随机扩增多态性DNA(SCOT)测试是评估植物提取物和微生物对大麦植物的影响的可行方法。关键字:关键字:关键字:关键字:hordeum vulgare;叶锈; puccinia hordei;诱导的电阻;植物提取物;苏格兰人;多酚氧化酶(PPO);过氧化物酶(POX);总酚类从这项研究中获得的结果表明,与未经处理的植物相比,通过SCOT分析检测DNA多态性具有评估遗传变化的重要强大工具,尽管其中一些测试在形态反应下显示出很高的相似性。
不断增长的人口和不断变化的环境引起了全球粮食安全的重大关注,目前几种重要农作物的改善率不足以满足未来需求1。这种缓慢的改善率部分归因于作物植物的长代时代。在这里,我们提出了一种称为“速度育种”的方法,该方法大大缩短了生成时间并加速了繁殖和研究计划。速度繁殖可用于春季麦(Triticum aestivum),硬脂小麦(T. durum),大麦(大麦(Hordeum vulgare)),鹰嘴豆(Cicer arietinum)和Pea(Pisum sativum)和4代Canola(brassica napus),代替2-3的情况下,可用于实现多达6代的春季。 我们证明,完全封闭的,可控的环境生长室中的速度繁殖可以加速植物的发展,包括成人植物特征的表型,突变研究和转化。 在温室环境中使用补充照明可以快速生成单个种子下降(SSD),并可能适应大规模的农作物改进计划。 通过发光二极管(LED)补充照明节省成本。 我们设想将速度育种与其他现代作物育种技术相结合的巨大潜力,包括高通量基因分型,基因组编辑和基因组选择,从而加速了作物的改善速度。可用于实现多达6代的春季。我们证明,完全封闭的,可控的环境生长室中的速度繁殖可以加速植物的发展,包括成人植物特征的表型,突变研究和转化。在温室环境中使用补充照明可以快速生成单个种子下降(SSD),并可能适应大规模的农作物改进计划。通过发光二极管(LED)补充照明节省成本。我们设想将速度育种与其他现代作物育种技术相结合的巨大潜力,包括高通量基因分型,基因组编辑和基因组选择,从而加速了作物的改善速度。
亲爱的编辑,作物基因组编辑通过实现精英品种的精确改善,比常规育种具有巨大的优势。在谷物中,大麦(Hordeum vulgare L.)在全球重要性中处于第四位,并且在麦芽和酿造中具有广泛的应用。在像东亚这样的地区,大麦谷物具有传统的烹饪用途,直接煮熟为蒸大麦,烤成茶,或发酵用于味o和酱油,例如味道和酱油。值得注意的是,最近的健康趋势扩大了对年轻大麦草作为功能健康食品的兴趣。由于其富含维生素,纤维和类黄酮的含量,大麦草被加工成绿色果汁(Havlíková等人。2014)。这种绿色粉末表现出在抗毒剂,低脂肪和抗糖尿病活动中的有效性(Yu等人。2003;吉泽等。 2004; Takano等。 2013)。 在日本,雨季经常在收获季节之前,这使得预求发对谷物产量的挑战。 为了打扮,精英品种培养了早期的标题特征。 但是,这些特征对年轻的大麦草产量产生负面影响。 具体来说,年轻峰值的出现降低了草的商业价值。 当前归因于全球变暖的当前气候变化已加速且不稳定的尖峰变速,降低了草产量。 繁殖AP的转变,重点是当代品种中的晚期性状,对于保持一致的草产量至关重要。2003;吉泽等。2004; Takano等。2013)。在日本,雨季经常在收获季节之前,这使得预求发对谷物产量的挑战。为了打扮,精英品种培养了早期的标题特征。但是,这些特征对年轻的大麦草产量产生负面影响。具体来说,年轻峰值的出现降低了草的商业价值。当前归因于全球变暖的当前气候变化已加速且不稳定的尖峰变速,降低了草产量。繁殖AP的转变,重点是当代品种中的晚期性状,对于保持一致的草产量至关重要。我们的vious作品引入了planta粒子轰击 - 核糖核蛋白
育种过程中利用的自然遗传变异主要由减数分裂期间同源染色体之间的相互 DNA 交换(交叉,CO)来保证。CO 的形成发生在减数分裂染色体轴的背景下,减数分裂染色体轴是一种蛋白质结构,姐妹染色单体在减数分裂前期 I 期间沿着该结构排列成环状碱基阵列。在包括大麦 (Hordeum vulgare) 在内的植物中,严格的 CO 调控导致有限数量的 CO 偏向染色体末端,而大部分基因组(特别是间质染色体区域)在育种过程中保持未开发状态。因此,需要新的策略和工具来修改减数分裂重组结果。为了能够对(新的)减数分裂蛋白进行蛋白质组学鉴定,我们在拟南芥减数分裂细胞中使用基于 TurboID (TbID) 的邻近标记对两种减数分裂染色体轴相关蛋白 ASYNAPTIC1 (ASY1) 和 ASYNAPTIC3 (ASY3) 进行标记。在已鉴定的 39 种候选蛋白中,鉴定出大多数已知的轴相关蛋白和新蛋白。在突变体筛选后,我们鉴定出(至少)四种具有减数分裂突变表型的新候选蛋白。其中,一种候选蛋白被发现是联会复合体 (SC) 的一部分。如果没有它,SC 形成就会中断,交叉形成就会减少,而 CO 水平就会增加,CO 干扰几乎被消除。为了快速评估和研究大麦的减数分裂基因,我们在 Cas9 表达植物中建立了大麦条纹花叶病毒诱导的基因编辑 (BSMVIGE) 和基于多重晶体数字 PCR (dPCR) 的单花粉核基因分型。 BSMVIGE 能够分离出减数分裂基因缺陷的大麦植物,而无需稳定的遗传转化,而单花粉核基因分型能够在不增加分离后代群体的情况下高通量评估重组率。我们的装置应用于大麦中的各种减数分裂基因,表明大麦重组格局可以改变。总之,基于 TbID 的邻近标记能够识别减数分裂细胞等稀有细胞类型中的蛋白质邻近蛋白,而 BSMVIGE 与单花粉核基因分型相结合,能够快速解析大麦以及其他作物中的减数分裂基因功能。
驯化和作物改良 人类主导的驯化始于大约 12 000 年前的中东和新月沃地,随后传播到世界各地,包括中国、中美洲和安第斯山脉、近大洋洲、撒哈拉以南非洲和北美洲东部 [1-3]。尽管我们的标题很简单,但我们在这里尽可能区分驯化、多样化和作物改良事件,因为无论从进化还是表型角度来看,它们都是明显不同的过程 [4]。大规模调查显示,驯化植物种类涵盖约 160 个分类科,超过 2500 个物种经历了一定程度的驯化,约 300 个物种得到了完全驯化 [2、3、5]。目前,整合考古学、遗传学和基因组学证据的模型表明,驯化是一个多阶段过程,包括(i)开始栽培,(ii)所需等位基因频率的增加,(iii)驯化种群的形成,以及最后(iv)有意识的繁殖。尽管如此,由于存在多次驯化事件,并且驯化后与祖先物种的交换频繁,因此描绘许多物种的驯化历史非常复杂[6-8]。此外,值得注意的是,一些物种如Oryza nivara和巴西坚果是在没有驯化的情况下栽培的,并且对于与初始选择相关的遗传瓶颈已经有了深刻的分析[9]。总之,这些研究极大地增进了我们对性状进化的理解,并为驯化过程中的趋同进化和平行进化提供了相当多的见解[10]。例如,留绿基因 SGR 是一系列物种种子休眠的基础[11],番茄 (Solanum lycopersicum) 和辣椒 (Capsiscum annum) 中果实重量数量性状基因座子集映射到同一基因组区域[12],水稻 (Oryza sativa)、高粱 (Sorghum bicolor)、大麦 (Hordeum vulgare) 和小米 (Pennisetum glaucum) 的糯谷物改良性状均是由 Waxy 基因直系同源物的不同突变定义的[2]。与此相反,尽管最初认为驯化综合征经典性状的出现(如谷物种子落粒性的丧失)是平行进化的情况[13],但最近的遗传图谱研究表明,多种性状往往与非同源基因有关[14]。例如,玉米(Zea mays)的典型驯化基因 TEOSINTE BRANCHED 1(tb1)[15] 对粟的分枝影响较小[16],甚至在不同的大麦谱系中,不同的