传统上,工作记忆 (WM) 功能的研究维度包括两个:WM 负荷的个体内效应,以及任务表现的个体间差异。在人类神经成像研究中,N-back 任务经常用于研究这两者。一个可靠的发现是,前顶叶区域的激活呈现倒 U 型模式,即在高负荷水平下活动趋于降低。然而,尚不清楚这种 U 型模式是否是可以预测任务表现负荷相关变化的关键个体差异因素。本研究通过在比以前探索的更广泛范围内操纵负荷水平(N = 1 – 6)来调查这个问题,并提供更全面的大脑行为关系检查。在一个健康年轻人样本(n = 57)中,分析重点关注了先前研究中确定的左侧前额叶皮质 (LPFC) 的一个独特区域,以显示与任务表现和 WM 功能之间的独特关系。在这个区域,负荷相关活动的线性斜率,而不是 U 形模式,与目标准确度的个体差异呈正相关。综合补充分析揭示了这种模式的全脑选择性。目标准确度也由该 LPFC 区域的全局静息状态连接独立预测。这些影响是强大的,如交叉验证分析和样本外预测所证明的,而且至关重要的是,主要由高负荷条件驱动。总之,结果强调了高负荷条件在研究 WM 功能个体差异方面的实用性。
waldenström的巨型球蛋白血症描述/背景造血干细胞移植(HCT)是指造血干细胞被注入以恢复接受骨row毒药的个体中的骨髓功能的过程,有骨 - 毒性毒性剂量均具有整个身体放射治疗。造血干细胞。可以从骨髓,外周血或脐带血液中收获,新生儿分娩后不久。尽管脐带血是一种同种异体来源,但其中的干细胞在抗原上是“天真的”,因此与排斥反应或抗移植物宿主疾病(GVHD)的发生率较低有关。waldenströmmacroGobolinemiawaldenström大巨素血症(WM)是一种淋巴细胞的克隆疾病,占血液病恶性肿瘤的1%至2%,估计每年在美国每年有1,500例新病例。症状包括无力,头痛,中风样症状(混乱,协调丧失),视力问题,出血过多,无法解释的体重减轻和频繁感染。WM受试者的中位年龄为63至68岁,男性占病例的55%至70%。WM的中位生存期为5至10岁,随着年龄的增长,血红蛋白浓度,血清白蛋白水平和β2-微球蛋白水平作为结果的预测指标。该定义还需要具有小淋巴细胞的骨髓浸润的特征模式,这些淋巴细胞表现出具有可变细胞表面抗原表达的浆细胞分化。在第二次国际摩托巨球素血症的第二次国际研讨会上成立了经过修订的欧美淋巴瘤和世界卫生组织的分类,并在第二个国际研讨会上形成了共识小组,它主要是WM,主要是淋巴浆淋巴瘤(LPL),该淋巴结淋巴瘤(LPL)具有相关的免疫光蛋白M(IGM)Monoclonal gammapathy。第二个国际研讨会表明,诊断WM无需最低血清IgM浓度。
一项针对复发/难治性 WM 的多中心前瞻性 II 期临床试验对 Venetoclax 进行了研究,结果令人鼓舞,总体反应率为 84%,主要反应率为 81%,非常好的部分反应率为 19%。难治性 WM 的主要反应率低于复发性 WM(50% vs. 95%)。中位随访时间为 33 个月,无进展生存期为 30 个月。(有关这些反应类别的定义,请访问 https://onlinelibrary.wiley.com/doi/10.1111/bjh.12102)。值得注意的是,CXCR4 突变(可降低对依鲁替尼的反应)并不影响治疗反应或无进展生存期。唯一反复出现的严重不良副作用是中性粒细胞减少症,即中性粒细胞数量低于正常值(45%)。中性粒细胞是一种白细胞,有助于抵抗细菌感染。这种副作用包括一次发热性中性粒细胞减少症,其特点是发烧和中性粒细胞减少。在研究过程中,32 名患者中无死亡报告。在该临床试验的中途,无论之前是否使用过 BTK 抑制剂(例如 ibrutinib、acalabrutinib 或 zanubrutinib),维奈克拉都被发现对接受过治疗的 WM 患者是一种有效且可耐受的治疗方法。维奈克拉治疗未出现临床肿瘤溶解综合征(见下文维奈克拉副作用下的解释)、免疫球蛋白 M 爆发、神经病变、继发性癌症或心律失常(心脏以不规则或异常节律跳动的疾病)。
从幼儿园到小学和与年龄相关的发展过程的过渡,在4岁和7岁时的神经认知和学术能力都受到影响。在这里,我们使用学校的截止设计来嘲笑从年龄开始,工作记忆(WM)功能,VO Cabulary和Nuneracy Cors的影响。我们比较了两年年龄相似的两组儿童:一年级的一年级学生(FG),他们成为了他们符合条件和幼儿园(KG)的一年入学,他们被延迟到次年。所有儿童都完成了更改检测任务,同时使用便携式功能近红外光谱,词汇评估和计算筛选器记录大脑激活。我们的结果表明,与KG儿童相比,FG儿童在WM表现方面表现出更大的改善和更大的左侧额叶 - 顶额网络的参与度。此外,它们还显示出词汇和非符号算术评分的提高。通过WM Function预测了小学一年后的一年后的词汇和非符号算术得分的这种改善。我们的发现有助于越来越多的文献,研究了在接受正规教育后赋予儿童的神经认知和学术利益。
t619-0215 rutfmm%i *wm%k-&8-1 masami terauchi *>,masato koike *>和masahiko isfflno 2> 15高级材料多学科研究所,Tohoku University
工作记忆 (WM) 是研究最多的认知功能之一,尽管个体特征对表现的影响程度尚不清楚,尤其是对于老年人而言。本研究考虑了健康年轻人和老年人反复练习三个难度等级(1-、2- 和 3-Back)的视觉 N-Back 任务。我们的结果表明,对于这两个年龄组,预期的心理疲劳都被学习效果所抵消,在准确性和反应时间方面,女性比男性受益更多,在所有三个 N-Back 等级上都是如此。我们得出结论,未来的 WM 研究,特别是当依赖重复的 N-Back 课程时,应该考虑到与心理疲劳和性别有关的学习效果,无论是年轻人还是老年人。
尽管对认知功能和精神疾病的风险很重要,但对WM Connectome的发展知之甚少。现有的研究受到小样本量和横截面设计的限制,但表明按年龄在2岁的情况下,主要的网络中心的中间位置(BNC)在2至18岁之间的变化很小(10)(10)。使用6个方向扩散加权成像(DWI)的早期研究发现,节点BNC在生命的前两年中表现出很大的变化(11)。WM Connectome在出生后表现出小世界拓扑,随着出生至11岁之间的全球效率(GE)的提高(11,12),几个枢纽由出生时和年龄段的效率定义为几个枢纽(12)。对早产婴儿的研究表明,WM Connectome表现出较小的世界(SMW),并且早在30周的胎龄就具有丰富的俱乐部结构,并且在已经存在的成年人中发现了许多高级枢纽(13-15)。因此,现有的证据表明,成人白质连接素的许多方面,包括高中心性集线器的存在,在大脑发育中很早(16,17)。
扩散MRI(DMRI)是一种强大的方法,通常用于研究大脑神经途径的微观结构和几何形状。它测量了活大脑中水扩散的特征1,2。由于使用DMRI检测到的扩散fro纤维沿着大脑的神经途径限制了水的扩散,因此可以重建大脑主要纤维捆的3D几何形状。在退化性疾病中发生的病理过程,例如神经元和髓磷脂的丧失以及炎症,会影响组织扩散特性,以改变组织微结构和途径几何形状。因此,DMRI对标准解剖学MRI无法检测到的病理过程敏感。各向异性和扩散性测量是表征白质(WM)微结构特性的最广泛使用的措施。这些扩散指标已在退化,开发和精神病疾病中进行了研究3。随着许多类型的分子病理学影响DMRI信号,包括大脑中的淀粉样蛋白和Tau蛋白的积累,大量文献集中在绘制WM异常,这些疾病在神经退行性疾病的发展中产生,例如阿尔茨海默氏病(Alzheimer's Panties)等神经退行性疾病(Alzheimer's Diseation(Alzheimer)4-6,4-6,4-6,Parkinson's Parkinson's Parkinson's Parkinson's Disen和其他Dementias。Thomopoulos等。5检查了四个标准DTI指标,以及它们与痴呆症的严重程度如何在730名患者中作为阿尔茨海默氏病神经成像倡议(ADNI)的一部分进行了扫描。一项后续研究6在皮质灰质中检查了DMRI指标。Schilling等。他们发现,使用临床痴呆评级(CDR)等级评估平均扩散率(MD)与年龄和痴呆症的严重程度有关。他们发现皮质DMRI指标介导了AD的脑脊液(CSF)标记与延迟逻辑记忆性能之间的关系,这通常在早期AD中受到损害。较低的CSFAβ142和较高的PTAU181与皮质DMRI测量相关,反映了限制扩散和更大的扩散率。 AD病理学与扩散指标之间的这种明显联系已经增强了对使用DMRI研究AD的兴趣。即使这样,标准分析方法通常会将微结构指数降低到相对较大的感兴趣区域的汇总。这些局限性刺激了以较小的解剖量表为8,9的疾病对疾病对脑微观结构的影响。dTI的指标,例如分数各向异性(FA),径向扩散率(RD)和轴向扩散率(AXD)易受纤维交叉点的敏感性 - 单个voxel 11和任何个人数字中的多填充群体的存在所影响。虽然已经提出了基于体素的基于氧化的12和横向测量法方法来进一步改善受试者间的比对并有助于解决交叉纤维,但仍在体素水平上计算了许多微观结构措施。此外,当前的术语方法通常使用单变量方法分别计算每个捆绑包的组统计信息,而无需考虑大脑中相交纤维的复杂模式。拖拉术数据也可用于研究WM束的宏观结构或“形状”特性。13个计算的捆绑束指标与大脑WM的年龄相关的宏观结构变化的异质模式在大脑WM中的异质模式相比,与更均匀的微结构变化模式相比。最近的一项研究14发现,使用基于氧化的分析指标,AD的早期与TAU相关的WM变化是宏观的。据我们所知,没有任何工作研究WM微结构和宏观结构如何在神经退行性条件下共同改变了使用Tractometry方法等神经退行性条件,我们在当前的研究中解决了这一问题。在这项研究中,我们提出了宏观结构的规范术(MINT),以共同模拟微观结构的测量和纤维束几何形状的同时变化,并使用一种称为变异自动装编码器(VAE)的深度学习方法。当用作规范模型时,VAE可以编码健康对照中扩散指标的正常变异性的解剖模式。这个多元模型集成了多个互补的微观结构特征,并说明了不同DMRI指标之间的统计协方差以及与空间相关性。我们将薄荷衍生的微型与DTI的传统单变量措施进行了比较,并研究了在大型多站点样本中,在轻度认知障碍(MCI)和痴呆症中WM异常的特征模式。我们还研究了WM异常与痴呆症严重程度的临床指标有关。由于有兴趣确定用于检测和跟踪痴呆症的最佳微结构指标,因此我们还通过评估其对痴呆症的敏感性来对DTI指标进行排名。在痴呆症和MCI中可视化WM微结构异常之后,在两个不同的祖先和人口统计组中,我们研究了它们与整体裂纹几何形状的关系,并指出可以通过微观结构和形状的联合统计模型来解决的解释的歧义。
简介:从无序的非生物系统到有组织的分子结构的转变对我们理解热力学提出了重大挑战。尽管第二定律规定熵普遍增加,但表现出高分子复杂性的局部区域(例如生命早期涉及的区域)表明某些环境可以保持持续的偏离平衡状态。揭示促成这些转变的物理条件和机制对于解释生命起源前化学的出现和更广泛的自组织系统现象至关重要。在这里,我们对纳米裂缝网络可能产生的自调节富含热水的环境和量子隧穿介导的有机物合成增加的潜力进行了初步评估。我们还提出了一个初步的理论框架,该框架结合了多种形式的熵,以开发一种方法来独立追踪不确定性和无序属性,这些属性可能会推动由无生源论所暗示的新兴复杂性。纳米裂缝中的热自调节:维持宜居性:在纳米级裂缝中,水的热导率偏离其本体值 0.6 Wm -1 K -1 ,在三个范围内表现出类似阈值的转变:60 °C 以下:在矿物表面附近形成以刚性氢键为特征的冰状层,降低至 0.2–0.4 Wm -1 K -1 。60–100 °C:这些刚性层的部分破坏和与矿物晶格的声子耦合增加升至 0.3–0.6 Wm -1 K -1 。在这个中间范围内,该系统实现了一种自我热调节或“优先稳定性”,因为增量加热仅破坏了氢键网络的一部分,同时保留了足够的结构以防止完全转变为纯声子主导的传导。 100 °C 以上:结构化水的分解导致主要由声子驱动的热传输,推高至 0.6 Wm -1 K -1 以上,并接近 150– 200 °C(1.5–2 eV)时的键降解阈值。减半会使温度减半和加倍。较低的温度会使区域更长时间保持高温,促进高活化能反应并稳定冰状网络。局部加热会破坏 H 键晶格,形成保持秩序的反馈回路。这些非平衡条件产生不同的温度-时间曲线,从而实现原本无法接近的途径。我们注意到,关于水在纳米级裂缝中降低的热导率(0.3–0.6 Wm -1 K -1 )、连续热模型的有效性以及在纳米尺度上水的导热系数降低(0.3–0.6 Wm -1 K -1 )仍然存在不确定性。