摘要 - 专门的深度学习(DL)加速器和神经形态处理器的出现为将深度和尖峰神经网络(SNN)算法应用于医疗保健和生物医学应用的新企业带来了新的机会。这可以促进医学互联网系统(IoT)系统和护理点(POC)设备的进步。在本文中,我们提供了一个教程,描述了如何使用各种技术,包括新兴的回忆设备,可编程的门阵列(FPGA)和互补的金属氧化物半导体(CMOS),可用于开发有效的DL加速器,以解决各种诊断诊断,模式识别的诊断,信号过程和信号过程中的各种问题。此外,我们探讨了尖峰神经形态处理器如何补充其DL对应物以处理生物医学信号。该教程通过应用于医疗保健领域的大量神经网络和神经形态硬件的大量文献进行了研究。我们通过执行将传感器融合信号处理任务与计算机视觉相结合的传感器融合信号处理任务来标记各种硬件平台。在推理潜伏期和能量方面进行了专用神经形态处理器和嵌入AI加速器的比较。最后,我们对领域的分析进行了分析,并分享了各种加速器和神经形态处理器引入医疗保健和生物医学领域的优势,缺点,挑战和机遇的观点。
在本协议中,资本化条款具有以下含义:1。可用性级别:SaaS服务在服务窗口内的测量期内可用于以百分比表示的时间。2。附件:本协议附带的文件,构成了本协议不可或缺的一部分,并详细介绍了协议中规定的协议。3。行业条件:附录5中的供应商贸易协会的条款和条件。4。服务:SaaS服务以及供应商的所有管理和维护活动,以根据客户选择的包裹执行本协议。5。缺陷:SaaS服务中的重大错误,导致SaaS服务的实质性无法按照书面形式达到的规格运行。6。用户:由客户雇用或工作并根据协议使用SaaS服务的人员。7。非可用性:在服务窗口中无法获得SaaS服务的期间,客户端的商定使用。8。恢复时间:供应商旨在在商定的服务窗口内从客户那里解决报告的目标时间。9。事件:导致SaaS服务未根据商定规格或无法使用的事件。10。测量期:一个日历月。11。支持:在
裂变过程于1939年首次报道,并于1942年实现了世界上第一个人造的自我维持裂变反应。创建自我维持的裂变链反应在概念上非常简单。所需的一切都是要放置在正确的几何形状中的正确材料 - 无需极高的温度或压力 - 系统将运行。自1942年以来,裂变系统已被政府,工业和大学广泛使用。裂变系统独立于太阳接近或方向运行,因此非常适合深空或行星表面任务。此外,裂变系统的燃料(高度富集的铀)本质上是非放射性活性的,含有0.064 curiedkg。这与当前的空间核系统(放射性同位素系统中的PU-238包含17,000个Curiedkg)相比,并且某些高度未来派的推进系统(D-T融合系统中的Tritium将包含10个,OOO.W CURIEDKG)。zyxw的另一个比较是,在启动时,典型的空间裂变推进系统将比火星探索者的寄居者漫游者(Sojourner Rover)使用放射性病来进行热控制。裂变系统的主要安全问题是避免无意系统开始 - 通过适当的系统设计解决此问题非常简单。裂变的能量密度比最好的化学燃料大7个数量级,如果正确使用,则足以使能够快速,负担得起的访问太阳系中的任何点。
时空时间序列通常是通过放置在不同位置的监视传感器来收集的,这些传感器通常由于各种故障而包含缺失值,例如机械损坏和内部中断。归纳缺失值对于分析时间序列至关重要。恢复特定的数据点时,大多数现有方法都考虑了与该点相关的所有信息,较小的因果关系。在数据收集期间,不可避免地包括一些未知的混杂因素,例如,时间序列中的背景噪声和构造的传感器网络中的非杂货快捷方式边缘。这些混杂因素可以打开后门路径并在输入和输出之间建立非泡沫相关性。过度探索这些非毒性相关性可能会导致过度拟合。在本文中,我们首先从因果的角度重新审视时空时间序列,并展示如何通过前门调整来阻止混杂因素。基于前门调整的结果,我们引入了一种新颖的C技术性-Ware Sp aTiot e Mpo r al图神经网络(CASPER),其中包含一种新型的基于及时的解码器(PBD)和空间 - 可导致的因果发生(SCA)。PBD可以减少混杂因素的影响,而SCA可以发现嵌入之间的因果关系稀疏。理论分析表明,SCA根据梯度值发现因果关系。我们在三个现实世界数据集上评估Casper,实验结果表明,Casper可以胜过基准,并可以有效地发现因果关系。
尽管基于3D的GAN技术已成功地应用于具有各种属性的照片真实的3D图像,同时保持视图一致性,但很少有关于如何罚款3D impersimens的研究,而不会限制其属性特定对象的特定对象类别。为了填补此类研究空白,我们提出了一个基于3D的GAN代表的新型图像操纵模型,以对特定的自定义贡献进行细粒度控制。通过扩展最新的基于3D的GAN模型(例如,EG3D),我们的用户友好定量操作模型可以实现对3D操作多属性数量的精细而归一化的控制,同时实现了视图一致性。我们通过各种实验验证了我们提出的技术的有效性。
b'插入\ xc3 \ xbchrung在软件开发软件中的编程中
通过佛蒙特州地区代理商进行的“车轮上的进餐”计划,包括较老的和残疾的佛蒙特州,包括通过全球承诺投资来降低额外匹配的资金的选择。联邦营养计划被称为Snap-供应营养援助计划,称为佛蒙特州的3squaresvt(曾经称为“食品券”)。它旨在帮助低收入人购买他们所需的杂货以防止饥饿。3Squaresvt计划由人类服务机构内的儿童和家庭经济服务部门管理。我们听说过许多3squaresvt参与者将其称为生命线,在许多情况下,他们能够负担杂货的唯一原因。作为一个由一个非常充满爱心和勤奋的单身父亲抚养长大的人,抚养双胞胎女儿,我知道我父亲收到的快照是我们的整个每月杂货预算。我要亲身了解,快速的力量可以帮助家人度过,赶上,同时仍然经历了滋养共享的餐点的喜悦。我不会在没有快照的情况下成为我今天的位置。3squaresvt的资格由联邦政府和佛蒙特州决定。在佛蒙特州,收入或低于联邦贫困水平的185%的人和家庭可以有资格 - 对于一个四口之家,这意味着每月收入不超过$ 4,810,或每年的年收入约为57,000美元。那只是我们的一半
分割算法的疗效经常因拓扑错误,连接中断和空隙等拓扑错误而受到损害。为了解决这一问题,我们引入了一种新颖的损失函数,即拓扑 - 意识局灶性损失(TAFL),该功能将基于基于地面真实和预测段蒙版的持久性图表之间的拓扑结构术语与拓扑结构术语结合在一起。通过实施与地面真理相同的拓扑结构,拓扑的约束可以有效地解决拓扑结构,而焦点损失可以解决阶级失衡。我们首先是从地面真理和预测的分割掩模的过滤的立方复合物中构造持久图。随后,我们利用sindhorn-knopp算法来确定两个持久图之间的最佳运输计划。最终的运输计划最小化了将质量从一个分布到另一个分布的运输成本,并在两个持久图中的点之间提供了映射。然后,我们根据该旅行计划计算沃斯堡的距离,以测量地面真相和预测的面具之间的拓扑差异。我们通过训练3D U-NET与MICCAI脑肿瘤分割(BRATS)CHALLENE验证数据集来评估我们的方法,该数据需要准确地分割3D MRI扫描,从而整合各种方式,以精确鉴定和跟踪恶性脑肿瘤。然后,我们证明,通过添加拓扑约束作为惩罚项,通过将焦点损失正规化来提高分段性能的质量。
摘要 - 软件供应链由越来越多的组件组成,包括二进制文件,库,工具和微服务,以满足现代软件的要求。由软件供应商组装的产品通常由开源和商业组件组成。软件供应链攻击是网络安全威胁的最大增长类别之一,供应商产品的大量依赖性使单一脆弱性传播到许多供应商产品中成为可能。此外,软件供应链还提供了较大的攻击表面,可允许上游传播依赖性的漏洞影响核心软件。软件材料清单(SBOM)是一种新兴技术,可以与分析工具一起使用,以检测和减轻软件供应链中的安全漏洞。在这项研究中,我们使用开源工具Trivy和Grype来评估从各个域和大小的第三方软件存储库中开采的1,151个SBOM的安全性。我们探讨了SBOM跨SBOM的软件漏洞的分布,并寻找最脆弱的软件组件。我们得出的结论是,这项研究通过软件供应链漏洞表明了安全性的威胁,以及使用SBOMS来帮助评估软件供应链中的安全性的可行性。索引条款 - 软件供应链安全,材料清单,采矿软件存储库,第三方代码
摘要 - 机器学习在决策过程中的广泛采用引起了人们对公平性的担忧,尤其是对敏感特征和对少数群体的潜在歧视的治疗。软件工程社区的反应是开发面向公平的指标,经验研究和方法。但是,在整个机器学习生命周期中,理解和分类工程公平的做法仍然存在差距。本文介绍了一种新颖的实践目录,以解决从系统的映射研究中得出的机器学习中的公平性。该研究确定并分类了现有文献中的28种实践,将它们映射到机器学习生命周期的不同阶段。从该目录中,作者提取了可操作的项目及其对软件工程研究人员和从业者的影响。这项工作旨在提供全面的资源,以将公平考虑因素整合到机器学习系统的开发和部署,增强其可靠性,问责制和信誉。
