您好,我叫 Kenneth Bastian。我是 AI Web Tools LLC(也称为 AiWebTools.Ai)的所有者。我们是现存最大的 AI 工具网站,或者说是最大的 AI 工具网站之一。我们为自己的企业和其他企业创建和设计 AI 工具。我们创建的 AI 工具几乎可以完成任何事情。随着我们走向未来,我必须向可能根本不了解 AI 的立法者说明。AI 已经存在,并且将继续存在。任何法律都无法阻止或减缓其发展。我敦促您不要在任何情况下限制 AI 的使用,包括州内决策。未来将会发生许多变化。在未来,我在这里只是为了告诉您这些变化。我创建了多个人工智能工具,它们将从根本上取代大约 80% 的工作。我这样做并不是为了直接取代工作;相反,我这样做是为了赋予我们州内公民前所未有的权力。AI 赋予的权力是无限的,赋予每个人权力。它让那些在学校表现不佳的人能够知道该如何回答问题,如果他们没有口袋里的人工智能助手,他们可能永远不知道这些问题。我已经为不同的用例创建了 500 多个自定义人工智能,它们都有不同的目的和重点。我制作了各种各样的人工智能,从医生人工智能到兽医人工智能,再到教育导师,再到大学学位 GPT,这是一个 GPT,它基本上可以教你每一门大学课程,不管你想学什么学位,它都会教你所有这些。这只是表面。未来将会发生无数的事情,我真的无法在这篇证词中全部列出,但我觉得我必须向你们解释了解未来的重要性。将有大量的工作岗位流失,这是肯定的,无论你通过什么法律,即使人工智能明天成为非法,一切仍将保持不变。人工智能完全在基于网络的情况下运行,而你无法控制网络。此外,人工智能已经发展到可以在硬件本地运行,你甚至可以在本地计算机上下载。有几种人工智能是计算机原生的,人们对此一无所知,例如刚刚插入 Windows 开始菜单的 co-pilot,你可以毫不费力地将你的想法与 GPT 集成;然而,co-pilot 有必须遵守的条款和条件,因此它无法帮助释放人工智能所能做到的每一个方面。我打算设计尽可能多的人工智能,看看哪些行业领域会受到影响、会受到影响,并为此做好准备。在未来的不到一年的时间里,我和其他每个普通人所做的事将会是共同的。地球上的每个人都会为自己的个人任务制造自己的人工智能机器人,这些机器人将慢慢融入我们的智能设备中,它们将装在我们的口袋里。我们将比以往任何时候都更聪明,更有能力,我们所有人都将像其他人一样被赋予权力。这是不可阻挡的,它正在到来,你几乎无法阻止它。你可以在你的控制范围内通过法律,阻止州立法者使用人工智能阅读证词或类似的东西;然而,你永远无法控制人工智能。人工智能是它自己的东西,因为它在这个世界上以多种方式运行,所以它无法改变;它将进化成它注定要参与的任何东西,没有任何法律可以影响它的行动方向
○ 受新冠疫情蔓延等影响,基本计划从2020年延长至2022年。 ○ 最近,包括日本在内的世界各国都在努力与新冠疫情共存。考虑到日本将在2023年担任G7主席国,统一修订了基本方针和基本计划,编制了基本战略。相关部门将共同努力推动这一战略的措施。 ○ 关于传染病防治,政府接受这样的观点,即每个国家作为国际社会的一员做出贡献,都将使其在国际社会和本国的传染病防治中占据优势。因此,这一基本战略将包括通过与发达国家的合作以及与发展中国家的国际合作为国际社会做出贡献的措施。因此,这一基本战略的名称将更改为“加强新兴传染病应对措施的国际合作基本战略”。 ○ 基本战略将与《全球卫生战略》、《疫苗开发及生产体制强化战略》、《流感等新型传染病国家行动计划》、《亚洲健康促进举措基本政策》、《非洲健康促进举措基本政策》等政府相关政策相协调,综合推进。
摘要 — 目标:构建一个可以在单个受试者的小型 EEG 训练集上进行训练的 DL 模型提出了一个有趣的挑战,这项工作正试图解决这一挑战。具体来说,本研究试图避免长时间的 EEG 数据收集过程,并且不组合多个受试者的训练数据集,因为这会对分类性能产生不利影响,因为受试者之间的个体间差异很大。方法:使用大约 120 次 EEG 试验对定制的具有混合增强功能的卷积神经网络进行训练,每个模型仅针对一个受试者。结果:经过修改的具有混合增强功能的 ResNet18 和 DenseNet121 模型分别实现了 0.920(95% 置信区间:0.908,0.933)和 0.933(95% 置信区间:0.922,0.945)的分类准确率。结论:我们表明,尽管本研究使用的训练数据集有限,但与同一数据集上先前研究中的其他 DL 分类器相比,设计的分类器具有更高的分类性能。
硝化和反硝化生物过程用于去除废水处理中的氮,可提高出水水质,从而减少接收介质中的硝化和随后的氧气消耗;进一步将输送到沿海地区的氮降低到防止沿海水体富营养化的水平[1]。硝化是一个自养需氧过程,通过两个连续的反应将铵转化为硝酸盐:NH 4 + NO 2 – NO 3 –。在铵氧化的第一步中,铵被铵氧化细菌转化为亚硝酸盐,在第二步中,亚硝酸盐被亚硝酸盐氧化细菌转化为硝酸盐。众所周知,硝化生物的比例随着废水 C/N 比的增加而减少。反硝化是一种异养缺氧过程,通过反硝化生物体将硝酸盐转化为气态氮,反应顺序如下:NO 3 – NO 2 – NO N 2 O N 2 [2]。在废水处理中,硝化和反硝化通常分两个步骤进行,因为这两个过程的环境条件不同。废水的生物处理需要培养专门的细菌种群,这些细菌种群可通过固定化等工程技术来强化和加速。事实上,生物过滤器相对于活性污泥的主要优势在于其致密性和在废水生物处理中的效率 [3]。通常,生物膜被描述为基质包裹的微生物,它们粘附在表面和/或彼此上,产生一个动态环境,其中组成微生物细胞似乎达到体内平衡,并被最佳地组织起来以利用所有可用的营养物质。尽管有相当多的综合评论涵盖了生物膜特征和生物膜形成 [3],但它们通常不太强调生物物理原理在生物膜中的作用 [4]。在本研究中,我们根据最近的技术和理论进展重新审视膜催化生物物理模型,以及如何利用它们来强调膜介导硝化和反硝化的细节。我们研究了氮浓度在膜催化中可能造成的影响,并将注意力集中在用于确定分配常数的技术上。
摘要尼日利亚的尼日尔三角洲地区遭受石油污染,这会影响生态系统功能和人类健康,这需要找到利用当地资源的可持续补救选择。在这项工作中,主要用作农业目的的牛粪(CM)和家禽粪(PM),用于在实验室尺度上生物化原油污染的土壤。除了容易访问外,CM和PM还具有可持续的生物外源,可用于多种微生物,可用于生物学。在1.5个月研究结束时,评估了修正案对NC 10 -NC 40范围内指定的石油总碳氢化合物(STPH)的影响。与CM污染的土壤相比,观察到在PM对土壤中的STPH降解明显更高(23%);自然衰减土壤(Rena)增加了1%的降解。分析的样品中的前主导级分数为NC 16 -NC 35。与CM修订选项相比,PM修正案可以更好地对这些部分进行生物修复。此外,生物塑料比修正案与受污染的土壤的影响表明,每种形成的生物添加的比率为1:1(w/w)的比率比比率1:2(w/w)更好,这表明修正的量较高,而污染的土壤与污染的土壤的量越高,则有效的生物化量越有效。这项研究的结果证明了PM作为可持续,负担得起和本地生物修复技术的潜力,该技术在尼日尔三角洲的原油污染的土壤中恢复了土壤。
在关于国际废物贸易的辩论中,对资源效率和回收利用的关注逐渐开始伴随着否定环境外部性的关注。在这种情况下,我们研究了扩展生产者责任(EPR)对废物蝙蝠出口(WB)的影响。EPR被认为是“废物市场化”的关键政策。另一方面,WB是一种危险废物,也含有高浓度的关键原材料。因此,它们对于恢复关键资源的战略重要性,同时需要适当的环境管理。因此,对于处理WB的情况以及如何影响相关策略的情况至关重要。我们的结果基于重力框架中的差异差异模型,在EPR实施与其他废物的趋势相结合后,WB出口显示出一致的增加。此结果可能是间接的
作者的完整列表:吴,朱兰; Nanyang Technology University,能源研究所SOH,Tanto; Nanyang Technology University,能源研究所Chan,Jun Jie;南良技术大学,能源研究所Meng,Shize;丹尼尔(Daniel)材料科学与工程学院Nanyang Technological University; CEA,ICSM Srinivasan,Madhavi;南南技术大学,材料科学与工程学院,乔阳;南南技术大学,材料科学与工程学院
肥料动物饲料农药,除草剂洗涤剂阻燃剂润滑剂添加剂电池电解质塑料添加剂催化剂……等等!
电子邮件:solaja.oludele@oouagoiwoye.edu.ng摘要 - 塑料废物污染在全球范围内构成了重大的环境挑战,尤其是在尼日利亚等发展中国家,其中有限的废物管理基础设施加剧了问题。本文研究了人工智能(AI)技术解决发展中国家塑料废物的潜力,重点是尼日利亚的情况。通过对挑战,机遇,案例研究,政策含义和建议的全面分析,本文强调了AI在废物管理中的变革性作用。挑战诸如基础设施差距,数据稀缺和道德考虑之类的挑战,以及创新,效率和可持续性的机会。发达国家和发展中国家的案例研究说明了在收集,分类,回收和污染监测中成功的AI应用程序。政策的影响强调了全面立法,基础设施和技术投资,公众意识和跨部门合作的重要性。建议包括扩展的生产者责任政策,垃圾填埋场,教育运动和国际合作。发展中国家AI驱动的塑料废物减少的未来取决于技术进步,协作伙伴关系,投资增加,支持性政策和监管框架。通过利用AI技术和集体行动的力量,发展中国家可以解决塑料废物危机,促进环境可持续性,并为所有人提供更清洁,更绿色的未来。关键字 - 减少塑料废物,AI技术,发展中国家,废物管理,环境可持续性doi:http://dx.doi.org/10.14710/wastech.12.1.28-38 [如何引用本文:Solaja,O。M.(2024)。释放了人工智能的力量:革命性的塑料废物管理为发展中国家的可持续发展。废物技术,12(1),28-38 doi:http://dx.doi.org/10.14710/wastech.12.1.28-38]简介