摘要:生物废水处理是各种微生物将有毒化学物质降解为小的、环境友好的分子的过程。鉴于传统的物理和化学净化方法成本高、不可持续且不具针对性,生物处理在废水处理领域发挥着越来越重要的作用。生物处理策略的有效实施在很大程度上依赖于微生物的内在降解能力及其与污染物的相互作用。在这篇综述中,我们将重点介绍生物催化剂和生物反应器层面上工程化和改进生物处理的最新技术进展。具体来说,我们将讨论合成生物学在增强生物吸附和生物转化方面的进展,以及在受污染场所应用工程微生物所面临的挑战。我们将进一步回顾生物反应器设计的最新发展,特别是增材制造/生物打印的前景,通过复杂的三维结构和灵活的材料选择进一步优化生物反应器内部的物质传输。这些研究工作重新定义了生物处理的前沿,为经济、高效、可持续的废水处理开辟了新的机遇。
氮作为微生物的底物的重要性可以通过氮,亚硝酸盐和硝酸盐的浓度来确定。一些微生物可以在共培养的4天内完全分解可甲酰丙基丁香[19]。这些包括假单胞菌sp。FV CCM 8810和根茎sp。CCM8811。假单胞菌细菌执行原发性生物降解并摧毁烷基自由基,而根茎菌株降解烷基胺丙基丙蛋白酶残基。但是,此过程只能在富含低分子量无机氮的培养基中有效。要执行快速而完整的生物降解,这些微生物需要可用的氮来源。在没有矿物质成分的悬浮液中,生物降解持续29天,这是相当长的时间[20]。
超过50年的Graf品牌代表了高质量的塑料产品。我们的克拉废水储罐代表着最新的状态。我们的长期合作伙伴克拉罗(Klaro)于2014年加入了我们的一家公司,在过去的10年中已经发展起来,成为了用空运技术的小型SBR治疗系统的欧洲市场领导者。240,000个满意客户已经使用了我们的小废水处理系统。当您购买GRAF废水处理系统时,您会从30万以上满足的废水客户获得的经验中受益,以及在当地废水处理中的两个既定品牌的质量。
比砂砾/滤清器的大小,此外,还有50-80%的微塑料颗粒,这些颗粒是由于浓缩废水中发生的泡沫形成而保留的。建议调查特定过滤器对特定过滤器的效率
本卷涵盖了用于水处理和净化的技术。熟悉该领域的人会立即将其视为固液分离的论文。然而,该主题要广泛得多,因为所讨论的技术不仅限于仅依赖物理方法处理和净化废水的污染控制硬件。本书试图尽可能广泛地介绍那些适用于水(例如饮用水)和废水(即工业和市政)来源的技术。所讨论的方法和技术是物理、化学和热技术的组合。本书共有十二章。第一章介绍了术语和概念,以及需要水处理实践的原因。本章还通过为所讨论的主题提供组织结构,为本书的平衡奠定了基础。第二章涵盖了过滤理论和实践的 A-B-C,这是本书几章中讨论的基本单元操作之一。第 3 章开始讨论废水的化学性质,并重点介绍使用化学添加剂来帮助物理分离悬浮固体的过程。第 4 章至第 7 章介绍了特定技术的过滤实践。这三章涵盖了广泛的硬件选项,并提供了应用程序来指导
简介:抗生素耐药性逃逸到环境中并持续存在,对 20 世纪取得的医疗保健进步构成了迫在眉睫的威胁。与耐药细菌共存的微生物群落可能有助于发现全球抗菌控制的新策略,并抑制耐药性的出现和维持。然而,缺乏临床相关样本以及来自人工和自然环境的补充样本,是有效研究受影响人群及其周围环境中耐药性动态的主要障碍。方法:我们通过结合现有的当地临床和环境监测计划,将微生物群落的环境和临床测量与新出现的耐药性证据结合起来。临床样本来自南卡罗来纳医科大学 (MUSC) 感染监测培养计划,该计划定期对 MUSC 患者群体进行临床相关病原体采样。环境样本是与当地非营利组织查尔斯顿水源保护者合作的结果,该组织在该地区受欢迎的休闲场所进行水质监测。结果:剩余的感染监测样本可通过 Living µBiome Bank 系统用于研究,该系统能够对患者群体进行细致的电子表型分析,从而及时捕获临床微生物样本。我们展示了对这些 cl 进行测序的可行性
▪ 重视资源效率,提倡延长产品寿命、重复使用和回收利用,使用更少的资源实现相同的产出。这不仅减少了对原材料的需求,还有助于节约自然资源,从而整体减少碳足迹。
硝化和反硝化生物过程用于去除废水处理中的氮,可提高出水水质,从而减少接收介质中的硝化和随后的氧气消耗;进一步将输送到沿海地区的氮降低到防止沿海水体富营养化的水平[1]。硝化是一个自养需氧过程,通过两个连续的反应将铵转化为硝酸盐:NH 4 + NO 2 – NO 3 –。在铵氧化的第一步中,铵被铵氧化细菌转化为亚硝酸盐,在第二步中,亚硝酸盐被亚硝酸盐氧化细菌转化为硝酸盐。众所周知,硝化生物的比例随着废水 C/N 比的增加而减少。反硝化是一种异养缺氧过程,通过反硝化生物体将硝酸盐转化为气态氮,反应顺序如下:NO 3 – NO 2 – NO N 2 O N 2 [2]。在废水处理中,硝化和反硝化通常分两个步骤进行,因为这两个过程的环境条件不同。废水的生物处理需要培养专门的细菌种群,这些细菌种群可通过固定化等工程技术来强化和加速。事实上,生物过滤器相对于活性污泥的主要优势在于其致密性和在废水生物处理中的效率 [3]。通常,生物膜被描述为基质包裹的微生物,它们粘附在表面和/或彼此上,产生一个动态环境,其中组成微生物细胞似乎达到体内平衡,并被最佳地组织起来以利用所有可用的营养物质。尽管有相当多的综合评论涵盖了生物膜特征和生物膜形成 [3],但它们通常不太强调生物物理原理在生物膜中的作用 [4]。在本研究中,我们根据最近的技术和理论进展重新审视膜催化生物物理模型,以及如何利用它们来强调膜介导硝化和反硝化的细节。我们研究了氮浓度在膜催化中可能造成的影响,并将注意力集中在用于确定分配常数的技术上。