铝 (ppb) 200* 600 105 ND – 70 无 处理过程残留物、天然沉积物 氯化物 (ppm) 500* n/a 66 42 – 91 无 从天然沉积物中流出或沥出 颜色(颜色单位) 15* n/a 2 1 – 2 无 天然有机物 气味(气味阈值) 3* n/a 2 2 无 天然有机物 电导率 (µmho/cm) 1,600* n/a 642 424 – 859 无 在水中形成离子的物质 硫酸盐 (ppm) 500* n/a 122 70 – 175 无 从天然沉积物中流出或沥出 总溶解固体 (ppm) 1,000* n/a 394 253 – 534 无天然沉积物的径流或沥滤
索尔维是一家科技公司,其技术为日常生活的方方面面带来益处。索尔维在 63 个国家/地区拥有 21,000 多名员工,将人才、创意和要素结合在一起,以重塑进步。该集团致力于为所有人创造可持续的共享价值,特别是通过围绕三大支柱制定的“索尔维一个地球”路线图:保护气候、保护资源和促进更美好的生活。该集团的创新解决方案有助于为家庭、食品和消费品、飞机、汽车、电池、智能设备、医疗保健应用、水和空气净化系统等提供更安全、更清洁、更可持续的产品。索尔维成立于 1863 年,如今在其绝大多数业务领域中位居全球前三名,2021 年实现净销售额 101 亿欧元。索尔维在布鲁塞尔和巴黎泛欧交易所 (SOLB) 上市。了解更多信息,请访问 www.solvay.com。
微生物刺激素可作为生物和非生物胁迫保护剂和生长促进剂,在气候变化的背景下,在农业中也变得越来越重要。寻找能够在各种田间条件下帮助减少化学投入的新产品是新的挑战。在这项研究中,我们测试了两种具有互补作用模式的微生物生长促进剂(Azotobacter chroococcum 76A 和 Trichoderma afroharzianum T22)的组合是否可以帮助番茄适应最佳水和氮需求减少 30% 的情况。在最佳水和营养条件下,微生物接种物可提高番茄产量 (+48.5%)。此外,微生物应用提高了胁迫条件下的叶片水势 (+9.5%),降低了叶片整体温度 (-4.6%),并增加了地上部鲜重 (+15%),表明该组合可在有限的水和氮供应下充当植物水分关系的积极调节剂。在胁迫条件下施用 A. chroococcum 76A 和 T. afroharzianum T22 可显著增加根际微生物种群,这表明这些接种物可增强土壤微生物丰度,包括本地有益微生物的丰度。采样时间、有限的水和氮状况以及微生物接种均会影响根际土壤中的细菌和真菌种群。总体而言,这些结果表明,所选微生物群落可作为植物生长促进剂和胁迫保护剂,可能通过土壤微生物多样性和相对丰度的功能性变化触发适应机制。
肥料动物饲料农药,除草剂洗涤剂阻燃剂润滑剂添加剂电池电解质塑料添加剂催化剂……等等!
在水位波动区(WLFZ)的流量中,氮(N)的养分水平和磷(P)在上覆的水中由于土壤养分的释放而膨胀,从而影响cynodon dactylon等植物的分解。然而,对这些营养变化对植物养分释放和水动力学的影响的研究有限,使对水质影响的准确评估复杂化。这项研究使用了8个具有不同初始养分水平的水样品来模拟WLFZ土壤养分引起的N和P变化,并检查了Cynodon dactylon的分解和养分动力学。的结果表明,量量显着增加了N和P的初始水平,尤其是作为颗粒氮(PN)和颗粒磷(PP),影响了水中的植物分解和营养动力学。60天后,Cynodon Dactylon损失了47.97%-56.01%干物质,43.58%-54.48%的总氮(TN)和14.28%-20.50.50%的总磷(TP)。初始PN和总溶解氮(TDN)促进了干物质损失,PN和PP促进了TP损失,而PN和PN和TDN抑制了TN损失。到第60天,在上面的水中,植物释放的N和PN或TP之间没有发现正相关。但是,初始PP和PN水平与TN和TP负相关,表明抑制作用。进一步的分析表明,从土壤中释放出的PN和PP支持微生物骨料的形成,增强了硝化和磷的去除,从而随着时间的推移改善了水纯化。
现代农业提高农作物资源获取效率的目标取决于根系与土壤之间的复杂关系。根和根际性状在营养和水的有效使用中起着至关重要的作用,尤其是在动态环境下。本综述强调了一种整体观点,挑战了养分和水吸收过程的常规分离以及综合方法的必要性。预期气候变化引起的极端天气事件的可能性增加,导致土壤水分和养分的供应性爆发,探索了根和根际性状的适应性潜力,以减轻压力。我们强调了根和根际特征的重要性,这些特征使农作物能够快速响应不同的资源可用性(即根区域中水和移动营养物质的存在)及其可及性(即将资源传输到根表面的可能性)。这些特征包括根毛,粘液和细胞外聚合物物质(EPS)渗出,Rhizosheath形成以及营养和水转运蛋白的表达。此外,我们认识到平衡碳投资的挑战,尤其是在压力下,优化特征必须考虑碳良好的策略。为了促进我们的理解,审查要求认识到受控环境的局限性精心设计的领域实验。非破坏性方法,例如微型根茎评估和原位稳定的同位素技术,并结合了诸如根部渗出分析的破坏性方法,用于评估根和根际性状。建模,实验和植物育种的整合对于开发能够适应不断发展的资源限制的弹性作物基因型至关重要。
描述 沉箱是一种安全、防水的舱室,通常用于水下施工。通过添加压缩空气使舱室防水。战略环境研究与发展计划 (SERDP) 项目 MR-2648“建立坚固的沉箱结构以抵抗水下未爆炸弹药就地爆炸的影响”研究了沉箱作为防爆盾的使用。计算机模拟发现,SERDP 团队开发的坚固沉箱结构 (RCS) 模型能够显著降低水下爆炸的影响。
摘要 - Sirius和Polaris是代表康奈尔大学参加AUVSI Robosub 2024比赛的两辆自动驾驶汽车。在过去的一年中,Cuauv成员有无数小时的时间来构建我们的新2024 AUV Sirius。Sirius的上船体压力容器经过精心设计,以增加可及性并减少错误空间,并具有新的矩形轮廓。我们已经设计并集成了电池管理系统,以防止电流过度并最大程度地降低板损坏的风险。此外,我们的新基于伺服的致动系统承诺在完成任务时更可靠。这些进步的目的是建立一个可靠和精确的系统。今年的一个重要战略重点是在两辆车之间的机械和电气系统中都向后兼容。这支持我们整个系统的可靠性。