摘要:光学微/纳米图案的高质量制造的可用性为基于光学机械(OM)声音和光的相互作用而开发的可扩展电路和设备的道路铺平了道路。在这项贡献中,我们提出了一项有关OM腔的新研究,可以使其与紧密整合的波导对其耦合进行精确控制,这是增强模式激发和波浪能陷入诱因的必要条件,为波浪指导,滤波,滤波,填料,结合和传感打开了许多潜在应用的可能性。此外,可以避免对笨重的实验设置和/或光纤维耦合/激发的需求。同时,优化了在腔体中共鸣的机械和光学模式的质量因素,以及它们的OM耦合系数:两种激发的高度结合是实现其声音(AO)相互作用的先决条件。为此,腔体的横向大小已被抛物面,具有将腔分离的额外好处和远离耦合区域的集成波导。有限元方法已用于执行全波分析,并提供了有关正确描述光学散射和辐射所需的模拟设置的准确讨论。
宽带中红外(IR)超脑激光源对于分子指纹区域的光谱学至关重要。在这里,我们报告了AS 2 S 3-Silica Nansospike Hybrid Waveguides的产生,并在2 s-Silica Nansospike Hybrid波动中产生,由定制的2.8μm飞秒纤维激光器泵送。波导是由压力辅助熔融AS 2 s 3的压力融化到二氧化硅毛细管中形成的,从而可以精确地定制分散体和非线性。连续的相干光谱从1.1μm到4.8μm(30 dB水平)时,在设计波导时会观察到2.8μm在异常的分散体状态中。首次制造和研究了线性锥形的毫米尺度为2 s-3-silica波导,据我们所知,与均匀的波导相比,具有重新的规格相干性,表现出比均匀的波导更宽。由于熔融二氧化硅鞘屏蔽了AS 2 S 3,因此波导被证明是长期的稳定和防水。他们提供了产生宽带MID-IR超孔的替代途径,并在频率计量学和分子光谱中应用,尤其是在潮湿和水性环境中。©2021中国激光出版社
飞秒直接激光写入(FS DLW)是在透明介电材料中产生3D光子微结构的强大方法[1,2]。后者在短时间内通过非线性过程吸收FS脉冲的能量,从而在μM规模的辐照面积(损伤轨道)内进行了永久性的材料修饰,从而导致折射率的热变化。激光波导(WGS)最近引起了极大的关注[1]。飞秒脉冲对激光WGS的铭文受益于快速制造时间,高精度,获得各种几何形状和活性材料。对于此类WG,达到了低至中等传播损失。wg激光器代表光子积分电路的构件之一[2]。如果设计正确,它们会受益于单模模式操作,低阈值和高光强度[3]。表面WG可以通过将非线性光学材料沉积导致脉冲激光通过evanescent-Field景偶联而进行功能化[4,5]。
摘要:本文通过Zns薄膜和波导的结构和光学特征,介绍了二阶非线性光子学对二阶非线性光子学的优势。1。引言是由物质辐射相互作用引起的非线性光学现象,这已经得到了很大改善,这已经大大改善了光子设备的开发,可以在基于非线性光学材料的指导结构内强限制电磁场。[1]。到目前为止,只有很少的研究集中在硫化锌(ZNS)上。这种材料对于非线性光学元件来说是有希望的,因为它是电信波长[2]的高折射率,透明度的宽光谱,高第二[3]和三阶非线性系数[4]和多晶结构,并且有可能充分利用非线性过程[5]。从应用的角度来看,ZnS沉积方法的种类(其中一些是低成本)也代表了有趣的技术优势。在这项工作中,我们描述了由磁控溅射沉积的ZnS薄膜的结构和光学特性,以及第一个基于ZnS的波导的制造过程及其线性表征。
研究了两种气体(CO 2)和甲烷(CH 4)的两种气体中的中红外区域的检测,研究了不同的集成光子传感器。这三个研究的结构是基于Chalcogenide膜(CHG)或多孔也(PGE)和基于CHG的Slot波导的山脊波导。优化了波导尺寸,以在导向光和气体之间获得最高功率因数,同时保持在中红外波长范围内的单个模式传播。在CHG山脊波导的情况下,可实现的功率因数为1%,PGE-Ridge为45%,在CHG-Slot的情况下为58%。在λ=4.3μm处的二氧化碳的检测极低(LOD),甲烷在λ=7.7μm下的二氧化碳为0.1 ppm,由于中液范围内的较大的气体吸收系数,可获得CHG SLOT波引导的λ=7.7μm。对于多孔驻驻波导,还计算出低LOD值:CO 2在λ=4.3μm时为0.12 ppm,CH 4在λ=7.7μm处的Ch 4 ppm。这些结果表明,所提出的结构可以在环境和健康感测芯片上实现通用光谱检测所需的竞争性能。
我们通过环形梁研究表面极化子的辐射,该环形梁同轴封闭了一个圆柱形波导,该波导被均匀的介质包围。通过使用绿色二元组,电磁电位以及电磁场在波导的内部和外部。对于圆柱体内外的介电渗透率的一般情况,能量损失的表达是得出的。在与表面极化子辐射相对应的光谱范围内进行了全面分析。对于梁速度的中间值获得了光谱分布中的最高峰。在透明培养基的极限中,辐射表面极化子的光谱是离散的,相应的频率由圆柱波导的特征值方程确定。的数值示例。
由GAAS底物上的分子束外延生长的外延结构由6个周期Al 0组成。8 GA 0。 2 as/al 0。 25 GA 0。 75作为Bragg反射器(下视镜),A 350 nm Al 0。 45 GA 0。 55作为核心和4个周期Al 0。 8 GA 0。 2 as/al 0。 25 GA 0。 75作为Bragg反射器(上镜)。 两个Bragg镜子在NIR范围内为泵梁提供了光子带隙垂直限制,也为电信范围内生成的SPDC光子的总内部反射覆盖提供了。 因此,泵和SPDC模式的特征是不同的分散曲线,允许单波导相匹配条件Δβ(0)= 0(等式 (s6)下面)要在关注的光谱范围内满足。 外延结构是通过分子束外延生长的,样品通过电子光刻(使用高分辨率HSQ抗性)处理,然后是ICP干蚀刻。 SPDC电信模式的模拟耦合常数为C TE = 2。 7 mm -1在TE极化中,C TM = 2。 48 GA 0。2 as/al 0。25 GA 0。 75作为Bragg反射器(下视镜),A 350 nm Al 0。 45 GA 0。 55作为核心和4个周期Al 0。 8 GA 0。 2 as/al 0。 25 GA 0。 75作为Bragg反射器(上镜)。 两个Bragg镜子在NIR范围内为泵梁提供了光子带隙垂直限制,也为电信范围内生成的SPDC光子的总内部反射覆盖提供了。 因此,泵和SPDC模式的特征是不同的分散曲线,允许单波导相匹配条件Δβ(0)= 0(等式 (s6)下面)要在关注的光谱范围内满足。 外延结构是通过分子束外延生长的,样品通过电子光刻(使用高分辨率HSQ抗性)处理,然后是ICP干蚀刻。 SPDC电信模式的模拟耦合常数为C TE = 2。 7 mm -1在TE极化中,C TM = 2。 425 GA 0。75作为Bragg反射器(下视镜),A 350 nm Al 0。45 GA 0。 55作为核心和4个周期Al 0。 8 GA 0。 2 as/al 0。 25 GA 0。 75作为Bragg反射器(上镜)。 两个Bragg镜子在NIR范围内为泵梁提供了光子带隙垂直限制,也为电信范围内生成的SPDC光子的总内部反射覆盖提供了。 因此,泵和SPDC模式的特征是不同的分散曲线,允许单波导相匹配条件Δβ(0)= 0(等式 (s6)下面)要在关注的光谱范围内满足。 外延结构是通过分子束外延生长的,样品通过电子光刻(使用高分辨率HSQ抗性)处理,然后是ICP干蚀刻。 SPDC电信模式的模拟耦合常数为C TE = 2。 7 mm -1在TE极化中,C TM = 2。 445 GA 0。55作为核心和4个周期Al 0。8 GA 0。 2 as/al 0。 25 GA 0。 75作为Bragg反射器(上镜)。 两个Bragg镜子在NIR范围内为泵梁提供了光子带隙垂直限制,也为电信范围内生成的SPDC光子的总内部反射覆盖提供了。 因此,泵和SPDC模式的特征是不同的分散曲线,允许单波导相匹配条件Δβ(0)= 0(等式 (s6)下面)要在关注的光谱范围内满足。 外延结构是通过分子束外延生长的,样品通过电子光刻(使用高分辨率HSQ抗性)处理,然后是ICP干蚀刻。 SPDC电信模式的模拟耦合常数为C TE = 2。 7 mm -1在TE极化中,C TM = 2。 48 GA 0。2 as/al 0。25 GA 0。 75作为Bragg反射器(上镜)。 两个Bragg镜子在NIR范围内为泵梁提供了光子带隙垂直限制,也为电信范围内生成的SPDC光子的总内部反射覆盖提供了。 因此,泵和SPDC模式的特征是不同的分散曲线,允许单波导相匹配条件Δβ(0)= 0(等式 (s6)下面)要在关注的光谱范围内满足。 外延结构是通过分子束外延生长的,样品通过电子光刻(使用高分辨率HSQ抗性)处理,然后是ICP干蚀刻。 SPDC电信模式的模拟耦合常数为C TE = 2。 7 mm -1在TE极化中,C TM = 2。 425 GA 0。75作为Bragg反射器(上镜)。 两个Bragg镜子在NIR范围内为泵梁提供了光子带隙垂直限制,也为电信范围内生成的SPDC光子的总内部反射覆盖提供了。 因此,泵和SPDC模式的特征是不同的分散曲线,允许单波导相匹配条件Δβ(0)= 0(等式 (s6)下面)要在关注的光谱范围内满足。 外延结构是通过分子束外延生长的,样品通过电子光刻(使用高分辨率HSQ抗性)处理,然后是ICP干蚀刻。 SPDC电信模式的模拟耦合常数为C TE = 2。 7 mm -1在TE极化中,C TM = 2。 475作为Bragg反射器(上镜)。两个Bragg镜子在NIR范围内为泵梁提供了光子带隙垂直限制,也为电信范围内生成的SPDC光子的总内部反射覆盖提供了。因此,泵和SPDC模式的特征是不同的分散曲线,允许单波导相匹配条件Δβ(0)= 0(等式(s6)下面)要在关注的光谱范围内满足。外延结构是通过分子束外延生长的,样品通过电子光刻(使用高分辨率HSQ抗性)处理,然后是ICP干蚀刻。SPDC电信模式的模拟耦合常数为C TE = 2。7 mm -1在TE极化中,C TM = 2。4
摘要:最近,人们对具有负磁导率并在 GHz 和 MHz 频率范围内工作的磁性超材料进行了大量研究。这些超材料结构可用于提高近场无线电力传输系统、地下通信和位置传感器的效率。然而,在大多数情况下,它们只设计用于单一应用。本研究重点研究磁感应波在有序排列的磁性超材料结构中的传输。该结构可同时用于无线电力传输和近场通信。单元由植入在 FR-4 基板上的五匝螺旋线形成。外部电容器用于调节磁性超材料单元的谐振频率。磁感应波的特性,包括反射、传输响应和波导上的场分布,已经得到了广泛的计算和模拟。获得的结果表明,一维和二维磁性超材料配置都具有传导电磁波和传播频率为 13.56 MHz 的磁场能量的能力。还研究了直路径和交叉路径配置,以确定二维超材料板上的最佳配置。
硅光子学在过去十年中已成为未来应用的有前途的解决方案,例如5G Fronthaul,工业自动化,自动驾驶汽车,数据中心,计算机记忆分解和超越[1]的高速光学互连。通过利用互补的金属 - 氧化物 - 塞体导体(CMOS)制造技术先前是为电子工业开发的,已经开发了各种高速主动的光学组件,例如调制器和光电遗传学器[2,3]。此外,在各种FAB中,已优化了被动光学组件(例如光栅耦合器[4]和波导[5])的生产方法。为了进一步增强从/到光子积分电路(PIC)的被动组件和活动组件之间的光学连接,互连波导的正确设计和形状起着至关重要的作用。随着新的光子构建块的引入,例如硅芯片上III – V光源的异质整合,需要连续改进。有三种通用方法可以在两个波导之间实现光耦合:对接耦合,方向耦合和绝热耦合。对接耦合方法是指直接连接的两个波导的模式曲线匹配。通过最大化模式字段重叠来优化其耦合效率。因此,对于异质整合,在彼此之间需要在不同的组件之间耦合光,对接耦合不是首选选项。此外,定向耦合器的带宽有限,因为节拍长度取决于波长。在定向耦合方法中,当输入波导处的模式耦合到耦合区域的超级模型的叠加时,光耦合在两个平行波导之间。该模式以半节拍的长度从一个波导到另一个波导完全耦合,而节拍长度可以设计为短[6]。但是,在实践中很难精确确定确切的节拍长度,从而使功率传输效率和设备性能不确定。在绝热耦合方法中,
引导和自由空间波之间的转换对于实现综合的Terahertz(THZ)通信和信号过程至关重要。在此,提出了一种双向转换机制,用于桥接二维(2D)引导波和自由空间波,这是通过具有元孔(MWMH)的金属波导的波浪操作来证明的。与一维引导波和自由空间波之间的常规转换相比,在提出的双向转换过程中,元孔可以任意操纵较高尺寸的THZ波相位,从而实现更强的光束操作能力和更高的增益。用作传输天线时,MWMH表现出出色的性能,即高增益(33.3 DBI),高辐射效率(90%)和柔性束操作。当MWMH被反向用作接收天线以获得2D引导波的焦点时,它可获得27 dB的增益,而重点效率为50.4%。传输和接收天线的测量结果与仿真结果非常吻合。所提出的双向转换机制促进了THZ集成光子设备的发展,并有望在第六代移动通信,雷达检测和无损测试中应用。