( K( ) ( ) High VPC1 VPC2 K K K ( K K ) 4 C C C = − = ).VPC1和VPC2的Valley Chern数量相等
摘要我们报告了二氧化硅(SOS)晶状体上掺杂Erbium掺杂的平面波导的制造和表征,可提供低损耗和适用于用于工程光波导放大器(1530-1565 nm)的光纤维通信的较低的光限制。在这里,我们描述了一种超快的血浆掺杂(ULPD)技术,该技术是使用由飞秒激光(波长800 nm)诱导的血浆进行的,其重复速率为10 kHz,脉冲持续时间为45 fs。此处介绍的ULPD方法已成功应用于先前使用脉冲持续时间约为100 fs且重复速率为1 kHz的FS-LASER掺杂在SOS底物上的稀土材料。已经分析了厚度,折射率,光学传播损失,光致发光强度和光致发光寿命的厚度,折射率损失,光发光损失,光发光损失,光发光损失,光致发光的寿命。我们报告了C波段中<0.4dB/cm的低传播损失,长寿命为13.21 ms,在1532 nm和最大的寿命密度产物6.344 x10 19 s.cm -3。低损耗平面平板波导和高寿命密度的产品有望在SOS平台上制造带状的波导的进一步可能性。所提出的主动波导制造方法可能对制造平面的集成光学波导放大器和与基于硅的光子积分电路兼容的激光。
光学波导可用于从外部光源到人体内部的光线,用于诸如光动力疗法或光学网络等疗法。[1]在高级波导中,可以将光输送与生物传感函数结合,其中光学/电气单位通过相同的波导在相反的方向上运输并用于诊断。在大多数情况下,此类波导是在批处理过程中制造的,具有顺序层沉积和预先固化/蚀刻步骤,该步骤适用于基于硅的微电子。[2]从制造的角度来看,需要采用连续的,更高的生产方法,以在单个生产过程中迈向额外功能的整合。令人印象深刻的进展,他们生产了多功能光纤[3],这些光纤融合了光学波导,微流体元素和电极通过热塑料的热绘制。[4]从患者的舒适性角度来看,生物医学波导还需要从二氧化硅和热塑性塑料转移到更合规的材料,以通过匹配目标组织的刚度来提高体内生物相容性。[1,5]要应用于肌肉或心脏等组织中的光遗传激活,光纤需要具有弹性特征并可扩展。有机硅弹性体(例如聚二甲基硅氧烷(PDMS))是有趣的候选者,在低MPA范围内提供刚度值[6],并将其作为生物兼容型植入物材料提供了证实的记录。[4C][7] PDM的光学特性非常适合波引导:PDMS具有较低的光学损耗系数,从UV到NIR波长(在850 nm时≤0.05dB cm –1)[8]和相对较高的折射率(RI≥1.40)。[8,9]此外,PDMS显示出较高的可扩展性(> 100%)和拉伸强度(> 1 MPa),[10]为体内高运动场景提供合规性和可伸缩性。[4C,11]使用可伸缩的光学设备在高应变下进行光输送和检索的重要性,用于假体中的一系列生物医学scenarios,例如假体中的应变感应[12],以及对外周神经的光学刺激[11b]和脊髓。
摘要:提出并实施了两种在掺铒碲酸盐玻璃中制作通道波导的方法。在第一种方法中,通过特殊的硅掩模将 1.5 MeV 和 3.5 MeV 能量的 N + 离子以不同的通量注入玻璃样品来制作通道波导。以 1.0 × 10 16 离子/cm 2 的通量注入的波导工作波长高达 980 nm,并显示出铒离子的绿色上转换。在第二种方法中,使用 11 MeV C 4+ 离子微束在 Er 3+ :TeO 2 W 2 O 3 玻璃中直接写入通道波导,通量范围为 1·10 14 –5·10 16 离子/cm 2 。波导在单模状态下工作,最高可达 1540 nm 电信波长。通过逐步热退火,传播损耗从辐射波导时的 14 dB/cm 降低至 λ = 1400 nm 时的 1.5 dB/cm。
光子系统之间的电磁波耦合依赖于通常限制在单个波长内的evanevanscent场。扩展evanscent耦合距离需要低折射率对比度和完美的动量匹配,以实现较大的耦合比。在这里,我们报告了在拓扑山谷大厅对波导中发现光子超耦合的发现,显示了多个波长的耦合效率的显着提高。在实验上,我们通过电磁能的涡流涡流流进行了波导之间的超高耦合比,达到了95%的耦合效率,以分离多达三个波长。拓扑系统中光子超耦合的演示显着扩大了片上波导和组件之间的耦合距离,为开发超耦合光子光子积分设备的发展铺平了路径,光学传感和电信。
集成的光子学是一种在应用程序的各个领域,包括光学共同传感和生物传感。尤其是,片上生物感应引起了极大的兴趣,这是由于其在低成本,紧凑性和低检测极限方面的潜力。CMOS兼容的氮化硅(SIN X)目前在片上光谱中起着重要作用,是可见/近红外(MR)平台的首选材料[1]。然而,sin x在蓝色/紫外线波长下遭受高吸收损失[2]。已经努力研究了在紫外线波长的波导,但紫外线平台仍处于起步阶段。对于理想的光子平台,低损耗和单模操作对于结合芯片上多个光学组件至关重要。最近,X。Liu等[3]报道了一个单晶AIN平台。从k = 390 nm处的出色胶片质量,中等的波导损失为8 db/cm。然而,即使使用电子束光刻,大波导维度和高指数(N)值为2.2也会导致多模式引导。相反,使用原子层沉积(ALD),氧化铝(A10 X)具有较低的折射率值,高于220 nm [4]的高透明度,可以很好地控制A10 X膜的均匀性和厚度。G.N. West等。 在“ k = 371 nm [5]时,以令人印象深刻的低损失为〜3 db/cm的A1G X波导,需要步进光刻来进行模式波导,然后才能实现单个模式操作。 在402 nm的波长下证明了5 dB/cm的传播损失。G.N.West等。 在“ k = 371 nm [5]时,以令人印象深刻的低损失为〜3 db/cm的A1G X波导,需要步进光刻来进行模式波导,然后才能实现单个模式操作。West等。在“ k = 371 nm [5]时,以令人印象深刻的低损失为〜3 db/cm的A1G X波导,需要步进光刻来进行模式波导,然后才能实现单个模式操作。在402 nm的波长下证明了5 dB/cm的传播损失。此外,它们的平台将氧化硅(Sio X)的实现为硬面膜,后来将其作为顶级层面。尽管这将有效地降低核心和覆层之间的指数对比,然后减少散射损失,但Sio X-覆层不可避免地会抑制平台的生物感应电位。在本文中,我们提出了由常规接触光刻(Karl Suss Ma6对准器)制造的空气层单模A10 X波导。在实施昂贵且耗时的步进光刻之前,该A10 X平台利用了一种高效且具有成本效益的光刻工具来制造紫外线/紫罗兰色频谱设备的研究原型。
摘要:本文通过Zns薄膜和波导的结构和光学特征,介绍了二阶非线性光子学对二阶非线性光子学的优势。1。引言是由物质辐射相互作用引起的非线性光学现象,这已经得到了很大改善,这已经大大改善了光子设备的开发,可以在基于非线性光学材料的指导结构内强限制电磁场。[1]。到目前为止,只有很少的研究集中在硫化锌(ZNS)上。这种材料对于非线性光学元件来说是有希望的,因为它是电信波长[2]的高折射率,透明度的宽光谱,高第二[3]和三阶非线性系数[4]和多晶结构,并且有可能充分利用非线性过程[5]。从应用的角度来看,ZnS沉积方法的种类(其中一些是低成本)也代表了有趣的技术优势。在这项工作中,我们描述了由磁控溅射沉积的ZnS薄膜的结构和光学特性,以及第一个基于ZnS的波导的制造过程及其线性表征。
2.1 IIUTROUCTION ............................................................................................................ ,。 。 2.2.1隧道离子ionrzatron ................................................................................................................................................................................................................................................................................................................. 7 7 ............................................................................................................................................................................................................................................... ,。,.... ,。 ............................................................................................................................................................................................................................................................................................................................................................................................................................................. .............................................................................................................................................................................................................................................................................................................2.1 IIUTROUCTION ............................................................................................................,。 。 2.2.1隧道离子ionrzatron ................................................................................................................................................................................................................................................................................................................. 7 7 ............................................................................................................................................................................................................................................... ,。,.... ,。 ............................................................................................................................................................................................................................................................................................................................................................................................................................................. .............................................................................................................................................................................................................................................................................................................,。。2.2.1隧道离子ionrzatron ................................................................................................................................................................................................................................................................................................................. 7 7 ...............................................................................................................................................................................................................................................,。,....,。 ............................................................................................................................................................................................................................................................................................................................................................................................................................................. .............................................................................................................................................................................................................................................................................................................,。