由于 III-N 材料体系的独特性质,AlGaN/GaN 基异质结构可用于制造高电流 (> 1 A/mm [1, 2]) 和高功率 (> 40 W/mm [1]) 的高电子迁移率晶体管和肖特基势垒二极管等器件。此类结构中二维电子气 (2DEG) 浓度的典型值为 N s = 1.0–1.3·10 13 cm -2,电子迁移率 μ ~ 2000 cm 2 V -1 s -1 。通过增加势垒层中的 Al 摩尔分数进一步增加浓度会受到应变弛豫的阻碍 [3]。此外,当 2DEG 密度增加时,2DEG 迁移率通常会大幅下降 [4],因此电导率保持不变甚至变得更低。使用具有多个 2DEG 的多通道设计的结构可能是实现更高电导率的替代方法 [5, 6]。有关 GaN 多通道功率器件的进展、优点和缺点的更多详细信息,请参阅最近的评论文章 [6]。这种设计能够在不降低迁移率的情况下增加总电子浓度。然而,强的内部极化电场会导致导带能量分布发生显著改变,因此一些无意掺杂的结构的通道可能会完全耗尽,总电导率会明显低于预期。另一方面,向势垒层引入过多的掺杂剂可能会导致寄生传导通道的形成。因此,需要优化设计。在本文中,我们研究了单通道和三通道 AlGaN/AlN/GaN 异质结构的设计对其电学性能的影响。
摘要 目的:确定袋鼠妈妈护理 (KMC) 对提前出院并于随后几天入住新生儿重症监护病房 (NICU) 的早产儿灌注指数、心率和血氧饱和度的影响。方法:本研究采用随机对照实验设计,并使用前测-后测对照组模型。本研究纳入了 2019 年 12 月至 2020 年 12 月期间提前出院并随后入住 NICU 的婴儿。在土耳其伊斯坦布尔一家私立大学医院的 NICU,使用简单随机化技术分配实验组 (n = 38) 和对照组 (n = 38)。比较了应用 KMC 的实验组和未应用 KMC 的对照组的心率、灌注指数和血氧饱和度水平。以 15 分钟为间隔测量这些参数,持续 45 分钟(0-1、15、30、45 分钟)。资料收集通过母婴入门信息表、袋鼠妈妈护理准备表、袋鼠妈妈护理生理参数监测表、Noninvaziv脉搏血氧饱和度仪进行,采用独立样本t检验、Pearson卡方检验、Fisher精确概率法进行统计。结果:实验组与对照组婴儿胎龄(分别为31.11±3.25和31.61±3.04,p=.491)和体重(分别为1778.29±436.93和1953.29±345.74,p=.057)相近,差异均无统计学意义。袋鼠妈妈护理前,实验组与对照组婴儿心率、血氧饱和度、血流灌注指数值均无差异(p>.05)。从应用KMC后的第一个15分钟到KMC后45分钟,实验组的心率和血氧饱和度与对照组相比显著降低(p=0.001)且趋于稳定。实验组在KMC期间第15、30和45分钟的心率低于对照组(分别为147.63±11.04;142.47±11.94;136.82±13.22和153.13±8.73;154.50±7.27;154.84±7.05)。此外,袋鼠妈妈护理期间的氧饱和度高于对照组(分别为 96.68 ± 2.08;97.24 ± 2.18;97.87 ± 1.66 和 94.79 ± 1.27;94.66 ± 1.45;94.39 ± 1.38)。与对照组相比,实验组在袋鼠妈妈护理期间心率和氧饱和度的显著差异在袋鼠妈妈护理后 45 分钟内持续。灌注指数在袋鼠妈妈护理期间 30 分钟和 45 分钟时显著升高。然而,尽管这种变化在袋鼠妈妈护理后仍持续,但灌注指数的变化并不具有统计学意义。结论:袋鼠妈妈护理有助于调节提前出院并在随后几天进入 NICU 的早产儿的心率、氧饱和度和灌注指数。关键词:心率、婴儿护理、袋鼠妈妈护理法 氧饱和度 灌注指数 早产
4 md.devendran@gmail.com摘要:慢性肾脏病(CKD)是一个重大的全球健康问题,通常导致肾脏衰竭,需要昂贵的医疗治疗,例如透析或移植。早期检测CKD对于及时干预和改善患者预后至关重要。 该项目旨在开发基于机器学习的预测模型,以便在早期诊断CKD。 通过利用一系列临床特征,例如年龄,血压,血糖和其他相关的生物标志物,我们采用机器学习算法,包括决策树,随机森林和支持向量机(SVM),以预测患者开发CKD的患者的可能性。 本研究中使用的数据集包括具有各种肾脏状况的患者的病历,并应用了诸如归一化和缺失数据处理的预处理技术以确保模型的鲁棒性。 使用诸如准确性,精度,召回和F1得分等指标评估模型的性能,以确保可靠的预测。 这种方法不仅旨在提高诊断准确性,而且还提供了一个数据驱动的解决方案,以帮助医疗保健专业人员做出明智的决策。 该项目的结果可以有助于更好地管理CKD,最终有助于减轻医疗保健系统的负担并改善患者护理。早期检测CKD对于及时干预和改善患者预后至关重要。该项目旨在开发基于机器学习的预测模型,以便在早期诊断CKD。通过利用一系列临床特征,例如年龄,血压,血糖和其他相关的生物标志物,我们采用机器学习算法,包括决策树,随机森林和支持向量机(SVM),以预测患者开发CKD的患者的可能性。本研究中使用的数据集包括具有各种肾脏状况的患者的病历,并应用了诸如归一化和缺失数据处理的预处理技术以确保模型的鲁棒性。使用诸如准确性,精度,召回和F1得分等指标评估模型的性能,以确保可靠的预测。这种方法不仅旨在提高诊断准确性,而且还提供了一个数据驱动的解决方案,以帮助医疗保健专业人员做出明智的决策。该项目的结果可以有助于更好地管理CKD,最终有助于减轻医疗保健系统的负担并改善患者护理。
身体残疾一直是我们社区面临的一个大问题。衰老、疾病和其他变量都是造成这些问题的原因。这就是为什么电动轮椅被设计用来帮助身体残疾人的原因。轮椅使用者已经接触过各种旨在提高其行动能力的辅助技术。因此,不同的辅助技术最近在帮助轮椅使用者移动方面发挥了重要作用,这是因为技术变化太快了。最近流行的辅助技术包括操纵杆、脑机接口、语音识别、舌头驱动系统、眼动追踪器和吸气和吹气。然而,由于某些国家/地区个人之间的技术差距,一些最有益的辅助技术变得难以利用。本研究的目的是研究和回顾这些身体残疾辅助技术的比较研究。在研究中,将舌头驱动系统、眼动追踪器、语音识别和吸气和吹气技术与操纵杆辅助技术进行了比较。比较基于选定的参数,包括可用性命令、疲劳、响应时间、信息传输速率、效果和成本。根据研究结果,研究人员提出了适合发展中国家的配备辅助技术的轮椅设计方案。关键词:身体残疾、电动轮椅、辅助技术、发展中国家。_______________________________________________________________________________________________ 1. 引言
尽管有许多尝试,但很难获得有关染色体大分子组织及其重复模式的信息。一个攻击点,长期以来一直被认可,但直到最近才无法实现,是对染色体某些组成部分的选择标记,其分布可以在随后的细胞分裂中看到。Reichard和Estborn'表明N15标记的胸苷是脱氧核糖核酸(DNA)的前体,并且没有转移到核糖核酸的合成中。最近Friedkin等人2以及降落和Schweigerl使用C'4标记的胸苷来研究DNA合成。在雏鸡胚胎和乳酸杆菌中,示踪剂没有明显的转移向核糖核酸。鉴于这些发现,胸苷似乎是实验所需的中间体,但是到目前为止使用的标签对于通过自显影手段的显微镜可视化并不令人满意。为了确定细胞中几个单个染色体是否是放射性的,必须获得具有分辨率为染色体尺寸的放射自显影仪。在此级别上的分辨率很难使用大多数同位素获得,因为它们的β颗粒的范围相对较大。理论上的tritium应该提供可获得的最高分辨率,因为β颗粒的最大能量仅为18 keV,对应于照相乳液中的微米范围。因此,应该可以在小(如单个染色体)的颗粒中识别该标签。考虑到这一点;制备trit胸腺标记的胸苷,并用于标记染色体,并通过使用照相emulsions遵循其在以后分裂中的分布。材料和方法。通过从乙酸的羧基催化trib催化tritium到胸苷的嘧啶环中的碳原子(该方法的详细信息),制备了高特异性活性(3 x 101 mc/mm)的trium标记的胸苷(3 x 101 mc/mm)。Vicia Faba(英国宽豆)的幼苗在含有2-3罐/ml放射性胸苷的矿物营养溶液中生长。选择该植物是因为它具有121arge染色体,其中一对在形态上是不同的,并且由于分裂周期的长度和循环中DNA合成时间的长度是在同位素溶液中生长后的4年后,以适当的时间在适当的时间内用水洗涤,并将其彻底洗涤为col col,并转移了col(col),并转移了col(col),并转移了一个saquine(col)。水罐/ml)以进一步增长。以适当的间隔固定在乙醇 - 乙酸中(3:1),在1 N HC1中水解5分钟,用Feulgen反应染色,并在显微镜载玻片上挤压。剥离膜,并如前所述制备放射自显影。5
世界各地已经实施了几辆太阳能渡轮。,例如,在挪威,世界上第一个全电动和完全太阳能的渡轮MS Folgefonn于2018年发射。渡轮由太阳能电池板和电池提供动力,可承载多达50辆汽车和199名乘客。在德国,每年的渡轮(Ostseestal的Sankta Maria)将平均运送143,000人,66,000辆汽车,1,600辆摩托车和近20,000辆自行车。创新的新电动汽车渡轮长28米,宽近9米,载有25吨,并且能够运输45名行人和每次过境的6辆车。通过更换用于穿越的旧渡轮,新渡轮每年将节省14,000升柴油,等于年度燃油消耗775柴油机
或许可以理解为什么有些人对人工智能 (AI) 持怀疑态度。首先,媒体和研究报告经常说明机器将如何接管我们的工作,从而导致许多人目前担任的工作岗位被取代。其次,在许多情况下,AI 仍然是一个“黑匣子”。通常,在机器学习中,我们只能看到输入和输出,但不知道这些输入如何组合以达到结果。换句话说,机器以我们完全无法观察到的方式将输入转化为输出。将黑匣子算法应用于司法等公共生活的各个方面将产生深远的社会和道德影响。机器学习技术的发展正在全速前进。然而,监控和故障排除的方法却落后了。
您好,我叫 Kenneth Bastian。我是 AI Web Tools LLC(也称为 AiWebTools.Ai)的所有者。我们是现存最大的 AI 工具网站,或者说是最大的 AI 工具网站之一。我们为自己的企业和其他企业创建和设计 AI 工具。我们创建的 AI 工具几乎可以完成任何事情。随着我们走向未来,我必须向可能根本不了解 AI 的立法者说明。AI 已经存在,并且将继续存在。任何法律都无法阻止或减缓其发展。我敦促您不要在任何情况下限制 AI 的使用,包括州内决策。未来将会发生许多变化。在未来,我在这里只是为了告诉您这些变化。我创建了多个人工智能工具,它们将从根本上取代大约 80% 的工作。我这样做并不是为了直接取代工作;相反,我这样做是为了赋予我们州内公民前所未有的权力。AI 赋予的权力是无限的,赋予每个人权力。它让那些在学校表现不佳的人能够知道该如何回答问题,如果他们没有口袋里的人工智能助手,他们可能永远不知道这些问题。我已经为不同的用例创建了 500 多个自定义人工智能,它们都有不同的目的和重点。我制作了各种各样的人工智能,从医生人工智能到兽医人工智能,再到教育导师,再到大学学位 GPT,这是一个 GPT,它基本上可以教你每一门大学课程,不管你想学什么学位,它都会教你所有这些。这只是表面。未来将会发生无数的事情,我真的无法在这篇证词中全部列出,但我觉得我必须向你们解释了解未来的重要性。将有大量的工作岗位流失,这是肯定的,无论你通过什么法律,即使人工智能明天成为非法,一切仍将保持不变。人工智能完全在基于网络的情况下运行,而你无法控制网络。此外,人工智能已经发展到可以在硬件本地运行,你甚至可以在本地计算机上下载。有几种人工智能是计算机原生的,人们对此一无所知,例如刚刚插入 Windows 开始菜单的 co-pilot,你可以毫不费力地将你的想法与 GPT 集成;然而,co-pilot 有必须遵守的条款和条件,因此它无法帮助释放人工智能所能做到的每一个方面。我打算设计尽可能多的人工智能,看看哪些行业领域会受到影响、会受到影响,并为此做好准备。在未来的不到一年的时间里,我和其他每个普通人所做的事将会是共同的。地球上的每个人都会为自己的个人任务制造自己的人工智能机器人,这些机器人将慢慢融入我们的智能设备中,它们将装在我们的口袋里。我们将比以往任何时候都更聪明,更有能力,我们所有人都将像其他人一样被赋予权力。这是不可阻挡的,它正在到来,你几乎无法阻止它。你可以在你的控制范围内通过法律,阻止州立法者使用人工智能阅读证词或类似的东西;然而,你永远无法控制人工智能。人工智能是它自己的东西,因为它在这个世界上以多种方式运行,所以它无法改变;它将进化成它注定要参与的任何东西,没有任何法律可以影响它的行动方向
本赛季,我们的机器人团队投入了大量精力来构建、分析、创建和测试我们的机器人!这是通过沟通、策略以及最重要的团队合作实现的。我们的团队在每次构建环节,尤其是比赛中都融入了团队合作,因为我们相信这是成功的关键。例如,我们的团队有两个项目经理,其中一个是我。我们跟踪团队的职业道德,并确保每个人都为团队做出贡献。由此,每个成员都建立了更牢固的关系,这让机器人技术更加有趣。团队合作也创造了一种积极的氛围。例如,当我第一次学习如何使用 CAD 和构建时,我的团队中总有人帮助我。这表明,当我们勤奋合作时,我们将实现共同的目标。
有各种利用大型语言模型的 AI 平台,教育工作者正在探索将其用于 PK-12 学习环境。这些平台可以为学生和教师提供各种支持。这项竞争性资助机会将资助订阅费和专业发展支持,用于学生高剂量辅导并通过使用 AI 平台减少教师工作量。这一机会的愿景是专注于 AI 平台集成中的教师和学生群体。它可能用于支持特定的建筑、年级、学科领域或学生群体。鼓励学校根据学业影响数据关注学生的需求。
