玉米的生产和撒哈拉以南非洲的生产力受到各种因素的约束。评估新开发的精英亲属线的遗传多样性可以帮助识别具有理想基因的线条并探索杂种育种的遗传相关性。这项研究的目标是评估遗传多样性和种群结构的水平,并确定适当的聚类方法,以将玉米含量分配为杂种群体。使用多样性阵列技术(DARTTAG)中密度平台对从三个来源种群中提取的三百七十六个精英杂种进行了基因分型。从1904年获得的3,305个SNP标记的结果显示,平均标记物多态性信息含量(PIC)为0.39,观察到0.02的杂合性,基因多样性为0.37,次要等位基因频率为0.29,Shannon和Simpson Intices,分别为6.86和949.09,分别为6.86和949.09,以及787.70.70.70.70.70.70.70.70.70.70.70.70。最佳亚群是由基于混合的模型和主成分分析定义的三个。平均遗传距离为0.303,从0.03(TZEI 2772×TZEI 2761)到0.372(TZEI 2273×TZEI 2832)。对于376个精英杂交的认可杂质分类,使用IBS距离矩阵和平均链接聚类方法提供了最高的辅助相关系数(0.97)。使用IBS距离鉴定了三个杂种组(HG),而Hg 1的平均连锁聚类方法具有188个近交,Hg 2具有137个,Hg 3具有59个近百列。基于血统的系统发育树与确定的异质基团表现出很大的一致性。基于潜在人口结构的F统计量显示,亚种群之间的差异为10%,遗传分化水平中等的亚群中的差异为90%(0.10)。精英杂交线表现出高度的遗传多样性,这可能有益于开发新的,早期培养的白色杂种,以减轻撒哈拉以南非洲的生产约束。
澳大利亚的虎鲸偶尔会被记录到捕食各种鲨鱼,包括蓝鲨 (Prionace glauca)、鲭鲨 (Lamna nasus)、鲭鲨 (Isurus oxyrinchus)、地鲨 (最有可能是群鲨 Galeorhinus galeus) 和虎鲨 (Galeocerdo cuvier)。但是,在澳大利亚尚未发现食白鲨肝脏的现象——尽管在加利福尼亚和南非臭名昭著的“Port”和“Starboard”二人组都曾报道过这种行为。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年2月14日。 https://doi.org/10.1101/2025.02.13.638114 doi:Biorxiv Preprint
神经外科,结构和功能连接实验室项目,Azienda Provinciale Per I Servizi Sanitari(APSS),9 Largo Medaglie D'Oro,38122,Trento,Trento,意大利BTRENALO B,ITALY B TRENTO B,NEUROSER GURIGY和NEURORGIGY和NEURELOGRY和NEURELOGY和NEURELOGY和NEURELOGY和NEURELOGY,NERURELOGY和NEURELOGY,NERTERINGER UNIVEMENT,NORTHWESTERN UNIXICY神经外科手术室,神经科学和神经康复部,BambinoGesù儿童医院IRCCS,4 Piazza Sant'Onofrio,00165,00165,意大利d Bruno Kessler Foundation(FBK)法国蒙彼利埃,国家健康与医学研究所(INSERM),U1051,“中枢神经系统的可塑性,人类干细胞和神经胶质肿瘤”,蒙彼利埃大学医学中心蒙彼利埃神经科学研究所,80 AV AVERTIN FLICHE,MONTPELLIER,MONTPELLIER,FRANCE,FRANCE
摘要近年来,可持续和生态粮食生产的发展引起了全球的兴趣。很明显,随着新的整合系统的发展,这种现象正在引起以水产养殖研究的变化。但是,仍然有必要了解综合系统中涉及的不同方面,包括虾和海藻等共培养系统。这项研究评估了绿色海藻作为食物来源对白虾penaeus vannamei肠道细菌群落的影响。虾:仅用颗粒(P)喂食,仅ulva Clathrata(UC),U。Clathrata + Pellet(UCP),仅ULVA LACTUCA(UL)(UL)和U. lactuca + lactuca + pellet(ULP)。在生长和生存方面,与对照(P)相比,ULP和UCP处理之间没有发现显着差异(P> 0.05)。对虾肠的细菌生物群的分析显示,与对照(P)相比,ULP,UL和UC中社区组成的显着差异(P <0.05)。我们发现,蛋白杆菌是所有治疗中最丰富的门,其次是用于UC,UCP和UL和UL和ULP治疗的细菌菌。虾只用海藻U. lactuca(UL,ULP)的rubritalea,lysinibacillus,acinetobacter和bellopopirellula的丰富度明显更高,用于U. Clathrata治疗(UC,UCP),是litoreibacter。对照(P)中颤动的相对丰度更高,显示出UC和UL处理的减少。我们的发现可以更好地了解综合的水产养殖系统,特别是那些利用海藻作为天然饲料来源的水产养殖系统。
1. 范德堡大学成像科学研究所,范德堡大学,美国田纳西州纳什维尔 2. 范德堡大学医学中心放射学和放射科学系,美国田纳西州纳什维尔 3. 法国波尔多大学 CEA 法国国家科学研究院神经退行性疾病研究所 - UMR 5293 神经功能图像组 4. 加拿大舍布鲁克大学舍布鲁克连接成像实验室 (SCIL) 5. 范德堡大学电气工程与计算机科学系,美国田纳西州纳什维尔 6. 亨利 M. 杰克逊基金会,美国马里兰州贝塞斯达 7. 美国马里兰州贝塞斯达国家生物医学成像和生物工程研究所 8. 美国田纳西州纳什维尔范德堡大学医学中心生物医学工程系 * Kurt G Schilling 电子邮件: kurt.g.schilling.1@vumc.org
抽象磁共振成像(MRI)提供了多种方法来非侵入性地估算大脑中白质(WM)的特性。除了从扩散加权的MRI中得出的各种指标外,还可以估算从T1加权MRI,WM高强度的T2加权MRI,T1:T2比率的髓鞘化的总WM体积,或者是从磁力转移比率(MMTR)的。在这里,我们利用了650名健康成年人[Camcan Cohort]的基于人群的寿命队列中所有这些MR对比的存在,以确定11个常用WM指标的协方差的潜在因素。需要四个因素来解释89%的方差,这是我们用1)纤维密度 /髓鞘形式解释的,2)自由水 /组织损伤,3)3)纤维跨的复杂性和4)微结构复杂性。这些因素显示出年龄和性别的明显影响。为了测试这些因素的有效性,我们将其与心血管健康和认知表现的度量相关。具体来说,我们进行了路径分析1)将心血管措施与WM因素联系起来,鉴于WM健康与心血管健康有关,以及2)将WM因素与认知措施联系起来,鉴于WM健康对认知很重要。即使在适应年龄后,我们也发现与脉压压力相关的血管因子预测了WM因子捕获自由水 /组织损伤,并且几个WM因素为流体智能和加工速度提供了独特的预测。我们的结果表明,在WM的常见MR度量中既有互补的和冗余信息,并且它们的潜在因素可能有助于确定健康衰老中白质健康的差异原因和贡献。
CUS 被广泛用于监测 NICU 新生儿的脑损伤;然而,它受到观察者间图像解释差异的限制。我们根据 PRISMA 声明进行了系统评价,以评估脑回声的定量分析是否可以预测新生儿以后的神经发育 (a) 和 WM 出现 (b)。在 MEDLINE、Scopus 和 ISI Web of Science 数据库中搜索了符合条件的英文文章;使用了以下 MeSH 术语:“大脑”和“超声波检查”。在 ClinicalTrials.gov 网站上搜索了未发表的数据。所有发表时间截至 2023 年 1 月 30 日的研究,包括接受过一次或多次脑回声定量评估的患者。对两种结果中的每一种都进行了亚组分析。使用适当的 NIH 质量评估工具进行质量评估。共纳入八篇文章。 PBI 是预测神经发育最有前途的技术,其中 FP WM/BN 和 PO WM/BN 比率是与足月神经运动状态更相关的两个参数。TA 是预测 WM 出现的首选技术,其中 ASM、对比度和熵是能够更好地区分没有 WM 损伤的患者和将发生囊性 PVL 的患者。大多数纳入的研究质量较差。PBI 和 TA 似乎都是预测神经发育和 WM 出现的有前途的技术。然而,需要进一步进行高质量的研究来更好地确定这些方法的潜力。
与没有这种病变的那些相比,缺血性中风后的预后(3),并且它们经历了更大程度的认知障碍(4)。WML可能是由脑小血管疾病引起的,脑白质血液流量减少(5)。目前,WML的原因通常归因于慢性小血管疾病。一些研究发现,脑灌注减少可能会导致双侧缺血和缺氧,从而导致微循环疾病并恶化神经变性(6)。次要皮质损伤会发生,因为白质纤维之间的连接受损(7)。然而,除了包括年龄和高血压在内的危险因素外,视网膜微血管异常的严重程度与lacunar梗死的发生和发展有关(8)和WMLS(9)(如多项研究中)。减少了视网膜微动菌和微化的数量,以及视网膜内层内层厚度的减小,与认知能力受损,灰色和白色质量较低以及损害的白质网络结构显着相关(10)。
简介:自由放养的白尾鹿(Odocoileus virginianus)是位于密歇根州东北部(美国)的牛结核病(BTB)的自我维持的水库,(美国)不断使该地区的牛业陷入困境。自由娱乐鹿的收获,诱饵禁令和农场的缓解措施减少了但没有消除鹿的BTB,也没有消除向牛的传播。鹿的明显患病率很低(1-2%),但恒定,疫苗接种可能是帮助解决该问题和值得研究的附加工具。结核分枝杆菌Calmette-guérin(BCG)疫苗是一种广泛使用的人类疫苗用于结核病,在家庭牲畜和野生动植物中也接受了很好的研究。它是主要的疫苗候选者,口服输送是将其交付给自由放养鹿的逻辑手段,尽管以前从未尝试过。