摘要:这是关于全球石油盗窃的两篇论文中的第二篇,讨论了减少石油盗窃、侵吞和欺诈的方法。石油是全球最大的被盗自然资源,每年损失 1330 亿美元,而燃料是走私最多的自然资源。石油盗窃占全球原油和石油燃料市场的 5-7%。它在能源供应链中根深蒂固,以至于盗窃被交易商计入价格,并被许多航运公司视为小偷小摸而容忍。石油盗窃和相关的不安全对发展中国家产生了巨大的负面经济影响,无论它们是否生产石油。 2011 年,几内亚湾发生多起油轮劫持事件后,非产油国贝宁 2012 年应税收入下降了 28%。在尼日利亚,石油产能关闭和延迟开采的石油数量是估计被盗数量的两倍多,每年石油利润税损失 200 亿美元,占 2019 年政府总税收的 63%。有组织的石油犯罪集团往往是跨国的,他们专业地进行盗窃和欺诈,利用司法管辖权的漏洞,并在执法变得更加有效时调整其做法。他们从劫持船只发展到盗窃油轮货物,再到绑架油轮船员;从资产实物赎金发展到通过勒索软件进行数字劫持。石油盗窃的收益往往会资助其他有组织犯罪,并引发针对社区的暴力行为和犯罪活动。石油盗窃和欺诈的 12 个共同点已被确定,它们可以指导国际解决方案,涉及三个目标领域:被盗石油量、被盗石油运输和被盗石油资金。对贿赂行为的起诉提供了采取行动的机会:如果政府官员参与了交易或装运,根据美国《反海外腐败法》,运输或支付非法石油可能构成贿赂。贿赂指控可能会针对促成石油盗窃的有偿“服务”(通过行动或不行动)提出。
摘要:这是关于全球石油盗窃的两篇论文中的第二篇,讨论了减少石油盗窃、侵吞和欺诈的方法。石油是全球最大的被盗自然资源,每年损失 1330 亿美元,而燃料是走私最多的自然资源。石油盗窃占全球原油和石油燃料市场的 5-7%。它在能源供应链中根深蒂固,以至于盗窃被交易商计入价格,并被许多航运公司视为小偷小摸而容忍。石油盗窃和相关的不安全对发展中国家产生了巨大的负面经济影响,无论它们是否生产石油。 2011 年,几内亚湾发生多起油轮劫持事件后,非产油国贝宁 2012 年应税收入下降了 28%。在尼日利亚,石油产能关闭和延迟开采的石油数量是估计被盗数量的两倍多,每年石油利润税损失 200 亿美元,占 2019 年政府总税收的 63%。有组织的石油犯罪集团往往是跨国的,他们专业地进行盗窃和欺诈,利用司法管辖权的漏洞,并在执法变得更加有效时调整其做法。他们从劫持船只发展到盗窃油轮货物,再到绑架油轮船员;从资产实物赎金发展到通过勒索软件进行数字劫持。石油盗窃的收益往往会资助其他有组织犯罪,并引发针对社区的暴力行为和犯罪活动。石油盗窃和欺诈的 12 个共同点已被确定,它们可以指导国际解决方案,涉及三个目标领域:被盗石油量、被盗石油运输和被盗石油资金。对贿赂行为的起诉提供了采取行动的机会:如果政府官员参与了交易或装运,根据美国《反海外腐败法》,运输或支付非法石油可能构成贿赂。贿赂指控可能会针对促成石油盗窃的有偿“服务”(通过行动或不行动)提出。
量子计算对气候的潜在影响和环境非常重要,并且在此阶段采取措施塑造其对可持续性和积极影响的轨迹对于负责任的发展至关重要。在这个问题中,我们建议进行调查的领域,以建立共同的理解并提高可持续发展。在理解量子计算的环境和气候影响时需要考虑两个维度。首先是在生命周期中开发和使用量子计算机的直接环境影响,包括资源需求和碳足迹(Arora和Kumar,2024年)。第二是针对气候解决方案的量子计算用例的可能性(Berger等,2021; Paudel等,2022; Ho等,2024)。尽管已经有了研究量子计算的能源需求的初步步骤(参见Auffèves,2022; Meier和Yamasaki,2023),但我们需要更好地了解开发,使用和处理量子计算机的全部生命周期的环境影响。这包括能源和水消耗,碳足迹,废物处理和回收以及矿物质的因素。这项最初的研究表明,与高性能计算(HPC)相比,量子计算可能会提供优势,从而降低环境成本。例如,关于量子计算的量子计算概念每秒的经典概念仍然缺乏社区共识(例如,参见Nayak;坎贝尔;替代建议)。一些突出显示的示例(绝不是详尽的列表)是:尽管当前的期望是量子计算机可能需要明显低于其经典的能量来解决某些类别的问题(Arute等人,2019; Meier和Yamasaki,2023),但首先有必要定义和同意指标以量化这些资源以正确地声称这一优势。结果,量化量子计算机的能源效率是一个挑战。为此定义社区所接受的指标和其他与环境相关的指标仍然是一个悬而未决的问题。此外,例如,量子计算系统的支持要求,例如低温冷却本身是资源密集的,因此必须考虑到计算总体资源需求时。另一个开放的问题是资源利用率如何用于有用的量子计算机。要考虑的第二维度是量子计算解决气候和其他环境挑战的潜力。
1。背景步骤程序旨在成为2040年代运行时世界上第一个原型融合能厂。融合是两个轻度原子核组合并释放大量能量的过程。这种融合过程是为星星提供动力并产生比燃烧化石燃料更多的能量。我们可以使用非常强大的磁场复制此过程,但是在地球上,我们还必须将这两个颗粒加热到比太阳核心高十倍的温度。这会导致氦气的产生(惰性气体),并形成一个称为中子的非常高的能量粒子,最终可以利用该中子来产生电力。在过去的几十年中,出现了许多令人难以置信的科学工作,以克服使融合能源的重大技术挑战从牛津郡的库勒姆融合能源中心出现。但是,该程序现在正在进入一个令人兴奋的操作原型工厂的新阶段。这项技术具有为子孙后代提供安全,可持续,低碳能源的巨大潜力。融合能量产生在本质上与核电产生中使用的裂变过程非常不同,并且本质上是安全的。与裂变不同,融合过程并未直接产生任何长期寿命的放射性核废料,尽管Tokamak周围的材料可能会被放射性激活,但创新仍在开发具有耐药性的技术和材料。它将由英国原子能局(UKAEA)的全资子公司Ukifs提供。传统核裂变厂之间的风险和这种融合技术之间的风险是通过以下事实认可的:步骤的关键监管机构是环境局和健康与安全执行官,与调节裂变厂的核监管办公室相比。原型“步骤”工厂将位于诺丁汉郡的西伯顿,靠近盖恩斯伯勒附近的林肯郡边界,旨在证明从融合中产生净能量的能力。330公顷的西伯顿(West Burton)现场,目前是西伯顿(West Burton)的煤炭发电站,被选为2022年10月的Step的位置。西伯顿校园将与Ukaea技能中心和一个商业校园一起容纳步骤设施。在2024年至2032年之间,阶梯设施的设计正在通过详细的工程设计进一步开发,同时,将寻求计划构建电厂的许可。的目的是在2032年之前建立完全进化的设计和批准,以使建筑能够开始。到2040年,将使世界上第一个原型融合能源植物成为佣金,并展示融合能源商业化的途径。UKAEA的最终任务是领导可持续融合能源的交付并最大程度地发挥科学和经济利益。虽然步骤是
作者:JJ McGinnis · 2022 — 接受所主张的索赔、辩护或其他立场。6.尽管律师费裁决在上诉中被部分推翻,但希尔别无选择,只能接受……
9在最近大选后,新政府确认,根据长期计划(LTPT)计划开始的工作将继续作为更广泛的再生计划的一部分。政府目前正在最终确定经修订的招股说明书,该招股说明书将概述新的优先事项和潜在的额外资金机会。理事会将继续让社区参与决策过程,并将在2025/26期间使用额外的能力建设资金来制定和完善投资计划。主要的再生计划预计将于2026/27开始,并将继续专注于Spennymoor的建设区域。
摘要:COVID-19 疫情给南部非洲带来了严重的经济后果,导致生产和就业率空前下降。该地区各地都出台了类似的政策应对措施,主要集中在对工人和企业的临时和不充分的救济、非常有限的财政和货币刺激措施以及对加速工业化和基础设施投资的承诺含糊其辞且资源不足。应对疫情衰退的措施凸显了该地区在全球金融市场上的有限影响力,这限制了救济计划和财政政策。此外,大多数国家的制造能力有限,这意味着增加基础设施和工业投资只能刺激进口。有限的政策应对措施也反映了南部非洲的不平等程度。企业和政策制定者在很大程度上都可以保护自己免受疫情的经济和健康影响。这使得他们不太可能采取紧急或果断的行动来应对弱势群体所遭受的影响。
Darryl Banjoo、Rahanna Juman、Wendy Nelson、Ruqayyah Thompson、Rosemarie Kishore、Ben Maharaj、Sheldon Ramoutar、Yasim Edoo、Denise Beckles 帕拉联邦大学 • 亚马逊:Patricia Chaves de Oliveira、Fernanda Nascimento Ufopa、Jose Eduardo Martinelli Filho • 圭亚那、苏里南、委内瑞拉:Steve Renfurm • 协调:Norbert Fenzl 撰稿人 Christopher Corbin、Darryl Banjoo 致谢 数据提供者 PBL 荷兰环境评估机构 • IMAGE-GNM 模型,Arthur Beusen • 城市废水,Peter JTM van Puijenbroek 华盛顿大学应用物理实验室 • 全球新闻模型,Emilio Mayorga 审稿人 CLME+ 项目协调单位 Laverne Walker、Patrick Debels、Martha Prada Triana RAC-CIMAB Marlen Perez Hernandez、Jesus Beltran Gonzales、Yamiris Gomez D'Angelo、Liuba Chabalina、Freddy Potrille Tito RAC-IMA Darryl Banjoo、Rahanna Juman GRID-Arendal Morten Sorensen、Thomas Maes 联合国环境规划署区域办事处(拉美和加勒比地区) Christopher Cox 联合国环境规划署全球营养物管理伙伴关系 Mahesh Pradhan、Milcah Ndegwa 联合国环境规划署/ RCU/ CAR Christopher Corbin 哥伦比亚 EAFIT 大学 Marco Tosic 帕拉联邦大学 Norbert Fenzl、Jose E. Martinelli Filho 世界资源研究所 Lauretta Burke 陆地来源(LBS)监测和
摘要:莫桑比克是世界上最不复杂的经济体之一。通过系统地考虑供求方面的因素,我们确定了可以帮助多样化和升级其经济的新产品和行业。在供应端分析中,我们使用有关经济复杂性文献中的网络方法来确定一组复杂的目标产品,需要对其他产品出口有用的生产能力,并且靠近莫桑比克现有的生产结构。在需求侧分析中,我们使用重力模型来预测给定特定于产品的贸易抵抗和地理上分散需求的目标产品和市场的出口潜力。莫桑比克工业政策的广泛部门重点在很大程度上与结构转型和出口促进一致。当前农业,农业和金属的优先级尤其重要,而机械,车辆和运输设备的机会却没有开发。我们发现莫桑比克有些潜力将目标产品出口到邻国。