固态核磁共振(SSNMR)是一种强大的光谱技术,可以在原子分辨率下为各种样品提供独特的结构信息,从生物大分子到无机材料。可以从偶极重耦实验1,2获得有价值的结构信息,因为它们重新引入了耦合,该耦合与所涉及的旋转之间的距离立方体成反比。因此,这样的实验可以直接深入了解空间接近,甚至允许进行内部距离测量。对于同性核重耦实验,双量器(DQ)重耦方案非常有用,因为可以通过适当的阶段循环抑制来自未耦合旋转的信号(“ DQ滤波器”)。3,4当这种贡献主导频谱并掩盖耦合自旋对中所需的信号时,这是必不可少的,因为例如将核与低自然同位素丰度(Na)相关的情况,例如13 c(1.1%Na)或29 Si(4.7%Na)。5,6这种实验通常患有非常低灵敏度的可行性在近年来大大增加,这是因为通过具有魔法旋转的动态核极化(MAS-DNP)可实现的实质灵敏度增强。7,8有效的激发和DQ相干的重新分配对于成功实施DQ重新耦合实验至关重要。高DQ过滤效率(〜73%)可以从理论上
摘要:大多数使用机载激光扫描 (ALS) 的森林生长研究都考虑了在重复的 ALS 数据采集中如何观察到森林属性的变化,但从 ALS 数据预测未来森林生长仍然是一个很少讨论的话题。本研究考察了 10 年内树木年轮宽度周期性年增量 (PAI) 的预测。这种方法的要求是在生长期开始时获取 ALS 数据。然后在给定的生长期后通过钻探对生长进行现场测量。使用基于区域的方法的原理,根据 ALS 指标对 PAI 进行建模。与强度相关的指标作为预测因子特别重要,而有效叶面积指数则不是。预测的均方根误差 (RMSE) 略高于 21%。额外的现场信息(土壤类型、管理操作)将 RMSE 提高了 2.7 个百分点。
摘要:平面纳米光子结构能够实现嵌入量子点的宽带、近乎统一的辐射耦合,从而实现理想的单光子源。电荷噪声限制了单光子源的效率和相干性,从而导致辐射光谱变宽。我们报告了通过在包含嵌入 ap - i - n 二极管的量子点的砷化镓膜中制造光子晶体波导来抑制噪声的方法。波导附近的局部电接触可最大限度地减少漏电流,并允许快速电控制(≈ 4 MHz 带宽)量子点谐振。耦合到光子晶体波导的 51 个量子点的谐振线宽测量在 6 nm 宽的辐射波长范围内表现出接近变换极限的辐射。重要的是,局部电接触允许在同一芯片上独立调谐多个量子点,这与变换极限辐射一起成为实现基于多发射器的量子信息处理的关键组成部分。关键词:光子晶体波导、量子点、单光子、共振光谱、纳米光子学、半导体异质结构
