Chromosome-scale genome assembly of bread wheat's wild relative Triticum timopheevii 1 2 Surbhi Grewal 1 , Cai-yun Yang 1 , Duncan Scholefield 1 , Stephen Ashling 1 , Sreya Ghosh 2 , David 3 Swarbreck 2 , Joanna Collins 3 , Eric Yao 4,5 , Taner Z. Sen 4,5 , Michael Wilson 6 , Levi Yant 6 , Ian P. King 1和4 Julie King 1 5 6 1。麦片研究中心,植物与作物科学系,生物科学学院,诺丁汉大学7号大学,拉夫堡,LE12 5rd,英国8 2。伯爵研究所,诺里奇研究公园,诺里奇NR4 7UZ,英国9 3。基因组参考信息学团队,惠康桑格学院,惠康信托基因组10校园,欣克斯顿,CB10 1RQ,英国11 4。加利福尼亚大学加利福尼亚大学,加利福尼亚州伯克利生物工程系,美国94720,美国12 5。 美国农业部 - 农业研究服务局,西部地区13研究中心,农作物改善与遗传学研究部门,布坎南街800 诺丁汉大学,大学公园,诺丁汉,NG7 2rd 16通讯作者:Surbhi Grewal(surbhi.grewal@nottingham.ac.uk)17 18摘要19 20 20小麦(Triticum aestivum)是最重要的食物作物之一,迫切需要增加生产的生产,以养活生长的世界。 triticum timopheevii(2n = 4x = 28)是一种同种二磷酸22小麦野生物种,其中包含在许多23个先前的小麦改善育种计划中利用的A T和G基因组。 在这项研究中,我们报告了基于PACBIO 25 HIFI读取和染色体构象捕获(HI-C)的24个染色体尺度参考基因组组装PI 94760。 ex asch。加利福尼亚大学加利福尼亚大学,加利福尼亚州伯克利生物工程系,美国94720,美国12 5。美国农业部 - 农业研究服务局,西部地区13研究中心,农作物改善与遗传学研究部门,布坎南街800诺丁汉大学,大学公园,诺丁汉,NG7 2rd 16通讯作者:Surbhi Grewal(surbhi.grewal@nottingham.ac.uk)17 18摘要19 20 20小麦(Triticum aestivum)是最重要的食物作物之一,迫切需要增加生产的生产,以养活生长的世界。 triticum timopheevii(2n = 4x = 28)是一种同种二磷酸22小麦野生物种,其中包含在许多23个先前的小麦改善育种计划中利用的A T和G基因组。 在这项研究中,我们报告了基于PACBIO 25 HIFI读取和染色体构象捕获(HI-C)的24个染色体尺度参考基因组组装PI 94760。 ex asch。诺丁汉大学,大学公园,诺丁汉,NG7 2rd 16通讯作者:Surbhi Grewal(surbhi.grewal@nottingham.ac.uk)17 18摘要19 20 20小麦(Triticum aestivum)是最重要的食物作物之一,迫切需要增加生产的生产,以养活生长的世界。triticum timopheevii(2n = 4x = 28)是一种同种二磷酸22小麦野生物种,其中包含在许多23个先前的小麦改善育种计划中利用的A T和G基因组。在这项研究中,我们报告了基于PACBIO 25 HIFI读取和染色体构象捕获(HI-C)的24个染色体尺度参考基因组组装PI 94760。ex asch。组件的总尺寸为26 9.35 GB,具有42.4 Mb的重叠元素N50和166,325个预测的基因模型。DNA甲基化27分析表明,G基因组的平均甲基化碱基比A T基因组更多。28 g基因组也与aegilops speltoides的S基因组更紧密相关,而不是与六倍体或四倍体小麦的B 29基因组。总而言之,T。timopheevii基因组组装为30发现了对食品31安全性的农艺重要基因的基因组发现的宝贵资源。32 33背景和摘要34 35人物属包括许多野生和栽培的小麦种类,包括二倍体,四倍体36和六倍体形式。多倍体物种起源于甲状腺素和37个相邻的Aegilops属(山羊草)之间的杂交。四倍体物种,毛triticum triticum tricum torgidum(2n = 4x = 28,38 aabb),也称为emmer小麦,三质体timopheevii(2n = 4x = 4x = 28,a t a t gg)是39多态的。triticum urartu thum。ex gandil(2n = 2x = 14,aa)是这两个物种1的基因组供体1,而B和G基因组与Aegilops 41 Speltoides 2的S基因组密切相关。两种四倍体物种均具有野生和驯化的形式,即T. turgidum L. ssp。42 dicoccoides(Körn。&graebn。)Thell。和SSP。dicoccum(schrankexschübl。)thell。,分别为43,T。Timopheevii(Zhuk。)Zhuk。 ssp。 armeniacum(jakubz。) slageren和ssp。 分别为44 timopheevii。 durum(desf。) 45 HUSN。Zhuk。ssp。armeniacum(jakubz。)slageren和ssp。分别为44 timopheevii。durum(desf。)45 HUSN。45 HUSN。此外,四倍体硬质小麦T. turgidum L. ssp。(2n = 4x = 28,AABB),用于意大利面的生产,六倍层面包小麦triticum aestivum aestivum 46 L.(2n = 6x = 42,aabbdd)从驯养的emmer小麦中进化而成,后者与aegilops tauschii(d tauschii donore hybridations the the the the the bentertiationally the tauschii donore(d genuschii donor)(d donore)6,000,000,000,000,000,000。十六世纪48个Triticum Zhukovskyi(Aagga M a M)源自培养的Timopheevii杂交和49个培养的Einkorn triticum单球菌3(2n = 2x = 2x = 14,A M A M)。50 51
与家禽和其他圈养的鸟类相比,减轻HPAI在野生鸟类中的影响的选择较少,成功通常取决于当地的情况。野生鸟类种群的风险缓解通常集中于通过限制人和家禽与野生鸟类与野生鸟类的访问和相互作用,适当使用个人保护设备(PPE)(PPE)以及访问野生鸟类栖息地以及限制野生鸟类栖息地以及限制(或悬浮)特定物种的管理活动(例如圈养繁殖,鸟类的易位,狩猎等)。car体去除以控制场地的HPAI传输,只有通过仔细的风险评估(OFFLU 2023)才能考虑。试图通过淘汰,令人不安的人群来控制野生鸟类和哺乳动物的病毒没有任何好处,因此它们继续前进(“危险”)或栖息地消毒或破坏。相反,应采取措施来改善监测,监视和生物安全性(WOAH 2022; FAO 2023)。
抗菌耐药性(AMR)是一个迅速发展的环境问题,要求一项全面的健康调查以挫败其向动物和人类的传播,以确保食品安全。海鲜,住房细菌AMR,对消费者健康构成了直接威胁,扩大了由于抗菌治疗而导致的住院风险,侵入性感染和死亡。各种海洋物种中相关的抗菌抗性基因(ARGS)可以通过各种途径进行积聚和传播,包括表面接触,呼吸和食物网中的喂养。我们的研究集中在英国通道和北海,关键的经济区域,特别探讨了底栖食品网中四个提出的AMR指标基因(TET(A),Blatem,Sul1和Inti1)的发生。分析350个平菲鱼的皮肤,g和肠道,我们的定量PCR(QPCR)结果揭示了AMR指标基因的总体患病率为71.4%。显然,与g和肠样品相比,SUL1和INTI1基因在鱼皮中表现出更高的检测,达到47.5%的患病率。靠近欧洲主要港口(Le Havre,Dunkirk,Rotterdam)与鱼类中AMR基因频率的增加相关,这表明这些港口在海洋环境中的AMR传播中的潜在作用。,我们观察到了英国通道和北海中指标基因的广泛分散,受海流,海洋交通和扁平鱼运动的影响。总而言之,Sul1和Inti1基因作为海洋环境中AMR污染的强大指标出现,在海水和代表底栖食品网的物种中很明显。必须进一步的研究来描述海洋物种在通过海鲜消耗中积累和传播AMR的作用。这项研究阐明了迫切需要在一个健康背景下努力理解和减轻海洋生态系统中AMR风险的努力。
气候变化正在转移寄生虫的传播,寄生虫由宿主密度,环境温度和水分确定。这些转变会导致寄生虫,野生动物和家畜的压力增加,并可能影响寄生虫控制策略的有效性。了解气候对宿主运动和寄生虫生命历史的互动效果将使有针对性的寄生虫管理,以确保牲畜生产力并避免对野生动植物种群的额外压力。为了评估气候变化下的复杂结果,我们根据宿主运动和由于升高而导致的非生物因素的变化,将胃肠线塑料传输模型应用于山地野生动植物 - 牲畜系统,并比较了预计的气候变化情景与历史气候。野生动植物主持人,高山Ibex(Capra Ibex Ibex),经历季节性高度移民和牲畜在夏季放牧八个星期。总寄生虫感染压力对宿主运动更敏感,而不是气候条件对寄生虫的可用性的直接影响。预计扩展的牲畜放牧将增加野生动植物的寄生虫暴露。这些结果表明,在预测气候变化对寄生虫传播的影响时,应考虑不同宿主物种的运动,并可以为支持野生动植物和牲畜健康的决策提供信息。
简介:食物能 - 水(很少)Nexus强调了人们依靠这些基本资源的系统之间的相互依赖性。,例如,在全球范围内,超过三分之二的淡水戒断用于生产食物,在能源产生过程中另外使用了10%。此外,食品系统还使用了全球净能量的八分之一。海鲜是一种营养上重要的食物,在整个海鲜供应链中有效地使用淡水和能源来保护未来的供应并减少环境影响至关重要。多样化的海鲜生产方法导致跨供应链中的资源差异很大,这可能会导致供应链中的孤立努力以提高效率,而不是涉及多个海鲜供应链的更大努力。此外,必须由渔民,水产养殖者,加工者和其他海鲜供应链参与者来了解制定和实施效率策略的努力,以避免将时间和资源投入到较低吸收的策略中。将很大一部分的海鲜进口到美国,因此与美国和国外利益相关者互动对于理解和改善与美国人消费的海鲜相关的少数Nexus至关重要。
乌干达环境和生计可持续性的咖啡自然资本是由Darwin倡议资助的三年项目(2020年10月至2023年9月),由乌干达(NARO),Makererere University和Kyagalanyi Coffee Ltd.(Volcafe)和UK Gardens(Borne offen)和Bodane(Borne divan)和Botanic divan nivan and nivan and divan 该项目的主要目标是:对乌干达的野咖啡物种(咖啡自然资本)进行详细调查,包括保护状况和灭绝风险;进行农场和现场试验,农艺评估以及Excelsa咖啡的价值链评估;对Eugenioides咖啡进行初步农艺评估;并证明乌干达的咖啡自然资本对生态系统服务提供,生计改善和咖啡行业的可持续性的价值。该项目的主要目标是:对乌干达的野咖啡物种(咖啡自然资本)进行详细调查,包括保护状况和灭绝风险;进行农场和现场试验,农艺评估以及Excelsa咖啡的价值链评估;对Eugenioides咖啡进行初步农艺评估;并证明乌干达的咖啡自然资本对生态系统服务提供,生计改善和咖啡行业的可持续性的价值。
伪酸病毒(PRV)属于疱疹病毒亚家族A,其中还包括水痘病毒。PRV是伪造(PR)的病因,通常被称为Aujeszky氏病(1)。PRV具有感染各种动物物种的能力,但只有猪作为该病毒的储液宿主(2-7)。PRV感染后,猪会根据感染时的年龄表现出不同的临床症状。新生小猪主要表现出神经系统症状并具有较高的死亡率,而感染的成年母猪表现出生殖和呼吸系统疾病(8-10)。自2011年以来,在整个中国的多个猪农场都有PRV的复兴。这次爆发的主要特征是堕胎,死产和仔猪死亡率增加(11)。这种复兴可以归因于PRV变体的出现,例如HN1201,TJ菌株和SDYC-2014(12-14)。多项研究表明,Bartha-K61缺失应变疫苗在提供对这些变体的全面保护方面是不可能的(13,15)。尽管通过许多国家通过疫苗接种成功控制或消除了伪造(PR),但中国猪中的流行仍然普遍(16)。尽管PR Bartha-K61缺乏疫苗进行了免疫,但仍发生了许多PRV爆发(13、17-21)。在2018年,中国发生了非洲猪的发烧,这对该国的猪农业产生了重大影响。Zhao等。 这可以归因于增强的生物安全管理实践。Zhao等。这可以归因于增强的生物安全管理实践。这导致了牛群分布,农场生物安全水平以及猪农业行业中的牛群循环策略的显着变化。发现,与爆发前采样的猪爆发后,ASF爆发后进行采样的PRV感染可能性较低(22)。结果,PR的患病率已经受到影响(23,24)。有关于2021年之前中国PRV血清流行的报告,以及相关因素和时空分析,没有2022年的相关数据。因此,在这项研究中,2022年在中国收集了超过160,000种血清样品,其目的是分析伪标记的当前患病率并探索时空模式。此外,对PRV感染进行时空分析可以帮助识别具有较高PRV患病率的簇并了解PRV感染变异的趋势。此信息可以帮助决策者设计中国未来PRV控制的更精确和成本效率的干预政策。
利用大型和多样化数据集的无监督预训练方法已在多个领域取得了巨大成功。近期研究已针对基于模型的强化学习 (MBRL) 研究了此类无监督预训练方法,但仅限于特定领域或模拟数据。本文中,我们研究了使用丰富的自然视频预训练世界模型的问题,以便高效学习下游视觉控制任务。然而,自然视频具有各种复杂的情境因素,例如错综复杂的背景和纹理外观,这妨碍了世界模型提取共享的世界知识以更好地概括。为了解决这个问题,我们引入了情境化世界模型 (ContextWM),它明确地分离情境和动态建模,以克服自然视频的复杂性和多样性,并促进不同场景之间的知识转移。具体来说,我们精心实现了潜在动力学模型的上下文化扩展,通过引入上下文编码器来保留上下文信息并赋能图像解码器,从而促使潜在动力学模型专注于关键的时间变化。我们的实验表明,搭载 ContextWM 的野外视频预训练可以显著提升 MBRL 在机器人操控、运动和自动驾驶等多个领域的采样效率。代码可从以下代码库获取:https://github.com/thuml/ContextWM。
科学研究和分析基于环境机构所做的一切。它有助于我们有效理解和管理环境。我们自己的专家与领先的科学组织,大学和Defra集团的其他部分合作,将最佳知识带入我们现在和将来面临的环境问题。我们的科学工作作为摘要和报告发表,所有人都可以免费获得。本报告是环境局首席科学家小组委托研究的结果。您可以在https://www.gov.uk/government/organisation/environment-agency/about/research上找到有关我们当前的科学计划的更多信息,如果您对本报告或环境局的其他科学工作有任何评论或疑问,请联系research@envorirnment-agencenty-agencency.gov.uk.gov.uk。
风能是一个快速增长的可再生能源领域,可减少温室气体排放并提供可持续的能源。但是,风力发电厂地区的环境破坏是一个新兴问题。这项研究旨在分析风草道对森林地区陆生动物的影响。进行了摄像头陷阱调查,以调查道路管理对野生动植物行为的影响。,我们沿着连接风力涡轮机的道路安装了52台摄像机三个月(10月1日至2021年12月30日),在韩国的Yeongyang-gun风电场上安装了摄像头,并使用占用模型评估了动物占用和检测概率。使用与地形和植被有关的因素来估计占用概率(使用站使用)。检测分析包括护栏,风力涡轮机,灌木丛和挡土墙的存在或不存在。其他变量包括摄像机类型,相机操作的天数和调查时间。在调查期间,使用摄像头捕获了七个陆地哺乳动物(Roe Deer,野猪,水鹿,浣熊,le狗,le夫,豹子,猫和马滕斯)。根据相机陷阱的记录,Roe Deer是最主要的物种,其次是野猪,浣熊狗和鹿,较少的the和Martens。就使用概率而言,道路区域中森林的存在是大多数物种的重要因素,而相机类型对于检测概率很重要。我们的结果表明,风电场与野生动植物的分布和福利间接相关。在道路上检测动物表明道路是野生动植物的通道,影响车辆行动过程中的动物行为,并可能导致栖息地断开。减轻野生动植物破坏的有效管理政策可以支持可持续的生态系统和生物多样性。这项研究的结果可以作为支持野生动植物保护,陆地生态系统和环境影响评估的参考。