风力涡轮机比例模型的风洞试验是评估风力涡轮机空气动力学的一种经济有效的方法,可节省时间、成本并避免与全尺寸试验相关的不确定性。然而,风洞试验转子缩放程序的主要限制是无法将雷诺数与全尺寸相匹配。本文介绍了 DTU 10 MW 风力涡轮机风洞 1/75 比例转子的非平凡气动弹性优化设计、实现和实验验证。更具体地说,这项工作是为浮动式海上风力涡轮机 (FOWT) 应用而开发的(Lifes50+,Bayati 等人,2013 年,2014 年);尽管如此,所报告的方法和得出的结论在风力涡轮机转子缩放方面具有普遍有效性。最近也在风力涡轮机缩放方面做出了类似的努力(Bredmose,2014 年)。此外,在(Bottasso 等人,2014 年)中可以找到对缩放效应的深入分析,该分析涉及米兰理工大学风洞的先前活动:这项工作涉及气动弹性模型设计程序的定义,并且在推力和扭矩值匹配方面获得了良好的结果,并且正确缩放了叶片结构行为,同时考虑了弯曲 - 扭转缩放(Campagnolo 等人,2014 年)。
本《建设和运营计划》(COP)中包含的某些信息属于商业机密和/或商业或财务信息,属于特权和机密信息,根据《联邦信息自由法》(5 美国法典 [USC] § 552(b)(4))(如海洋能源管理局 [BOEM] 的规定,见 30 联邦法规 [CFR] §§ 585.113 和 585.620),此类信息不得公开披露。根据《新泽西州公开记录法》(依据《新泽西州行政法规 [NJAC] 47:1A》、《新泽西州行政法规 7:1D-3》、《国家历史保护法》(16 USC 第 470w-3 部分)和 1979 年《考古资源保护法》(16 USC 第 4702-3 部分),此类特权和机密信息也不得公开披露。 Ocean Wind LLC 已将本 COP 中包含特权和机密材料的每个附录标记为“包含机密信息”,并要求 BOEM(以及向其提供本 COP 副本的每个联邦和州机构)禁止公开这些指定材料。
Engie宣布扩大其旗舰风电场项目,位于苏伊士湾的沿岸,目前正在埃及的Ras Ghareb,该项目正在建设中。该项目是非洲最大的项目,正在与红海风能财团内的Orascom Construction,Toyota Tsusho Corporation和Eurus Energy Holdings Corporation合作开发。扩张将使风电场的总容量从500兆瓦增加到650兆瓦,进一步巩固了恩吉在推进非洲和中东可再生能源开发方面的关键作用。作为这一扩展的一部分,已与埃及电力传输公司(EETC)签署了长期发电协议(PPA)的额外协议。本协议保证了150兆瓦扩展的收入,并确保该农场的整个650兆瓦的收入已有25年。
风向也是一条重要信息,速度和方向之间的关系也是如此。在西部大平原的良好风况下,盛行风来自南北。来自东和西的风较少,平均风速也低于来自南北的风。在山口,盛行风向将与山口一致。可以想象,对于某些地方来说,最经济的风力涡轮机将是方向固定的涡轮机,这样它就不需要转向风向。如果通过消除涡轮机方向的变化不会大幅减少能量输出,那么该风力涡轮机的经济可行性就会得到提高。但在做出这样的选择之前,我们必须拥有良好的风向数据。
c) 计算每个速度下通过四分之一弦点的俯仰力矩与攻角的关系,并将结果显示在表格中。5. a)。以 20、35 和 50 米/秒的空速运行风洞,并在攻角为 0°、4°、8°、12° 和 16° 时获取垂直安装的压力翼尾流中的尾流压力测量值。每次设置数据之前,务必检查机翼和皮托管的零速度压力测量值。您需要测量并校正零速度时压力传感器中的任何偏移。注意:在较小的攻角值(即最多约 8 度)下,可用的耙子可以充分覆盖整个尾流场。但是,在较高的攻角下,耙子可能无法完全覆盖尾流。为了正确测量这些极端值的尾流场,您需要将耙子移到机翼上方和下方。有关最高攻角尾流场测量设置的帮助,请咨询助教、教授或技术员)b) 绘制标准化尾流测量压力分布 q / q ∞ 与三种不同速度下每个攻角的尾流距离的关系。c) 通过对每个攻角和三个速度的尾流压力分布进行积分,用动量法计算翼型的阻力系数。绘制实验中使用的每个流速的阻力系数与攻角的关系,并将此结果与上面第 3 部分计算出的阻力进行比较。确保对两个不同阻力估计值中的任何差异或差异进行评论。6.确定雷诺数对升力、阻力和 1/4 弦俯仰力矩系数的影响。(绘制压力翼测量的升力和俯仰力矩系数,以及尾流测量的阻力系数与所有可用攻角的雷诺数的关系。)
空气阻力又称气动阻力,在高速运动中对运动员的动作有很大的影响。以滑雪运动而言,在滑雪场滑雪过程中,场地的风环境对滑雪者的身体产生推力或拖力,滑行速度和抗阻功受风的影响很大,如何减小风阻功是运动科学的研究重点。本研究对滑雪者实体模型进行了风洞实验。首先对某滑雪者身体进行非接触式三维测量,并扫描打印若干滑雪者模型;然后在黑龙江省亚布力滑雪训练基地针对该滑雪者典型的运动姿势进行风洞实验,研究滑雪过程中空气阻力系数与风速的关系。结果表明:滑雪过程中阻力系数不随风速而变化。滑雪运动员的身高、滑雪姿势、迎风面迎风面积等参数对阻力系数有一定的影响,滑雪运动员身高越高,阻力系数越大。本文总结出的规律可供运动员在训练中采取合理的战术、优化滑雪姿势,从而提高比赛成绩。
图 3.1 – 表示动量守恒和钝体尾流的控制面(风洞的固体壁、固体物体和限制有效尾流的恒压表面,两个表面垂直于未受干扰的速度矢量,表面 1 位于物体的上游,表面 2 是尾流横截面最大的表面)[4] ............................................................................................................................. 28
