Xuemei Peng 1,2 , Jinhui Ye 1,2 , Shihui Ma 1,2 , Jiali Sun 1,2 , Lu Wang 1,2 , Linping Hu 1,2 , Lin 7
全球人口增长和气候变化使满足基本需求(食物、水、能源和住房)的努力日益相互竞争。其中一个表现是快速开发农业用地用于城市用途或太阳能项目。农业光伏已成为一种有前途的方式,既能保护农田,又能适应新的太阳能发展。农业光伏项目以协同的方式将粮食作物或牲畜养殖与太阳能光伏并置。如果设计和选址得当,农业光伏项目可以同时提高作物产量、产生可再生能源、节约用水、保护农业用地,并为农村社区带来新的经济发展和税收收入。然而,需要联邦、州和地方各级更加重视政策,以加速农业光伏技术在全国范围内的部署。本文介绍了信息差距、外部性问题和地方反对如何阻碍美国农业光伏的发展,并确定了能够使农业光伏蓬勃发展的具体法律和政策。
大脑是控制和协调的执行器。当颅骨出现病变时,可能会对大脑生理产生退化、变形和不稳定的影响。然而,其主要后果可能因人而异。在这种情况下,肿瘤是一种特殊的病理,它会使脑实质永久变形。从转化角度来看,变形力学和压力,特别是肿瘤所致大脑的颅内脑压 (ICP),在文献中尚未得到全面解决。这是神经病变预后中一个重要的研究领域。为了解决这个问题,我们旨在在本研究中解决肿瘤脑中的压力之谜,并提出一种相当可行的方法。使用基于图像的有限元建模,我们重建了肿瘤脑并探测由此产生的变形和压力 (ICP)。肿瘤是通过将体素区域均匀扩大 16 和 30 毫米来生长的。总共研究了三个病例,包括肿瘤的现有阶段。还提供了由于脑室区域内流动而产生的脑脊液压力,以使模型在解剖学上逼真。对获得的结果进行比较,明确表明,随着肿瘤区域的面积和尺寸增加,变形模式发生了广泛变化并扩散到整个脑体积,肿瘤附近的集中度更高。其次,我们得出结论,颅骨内的 ICP 压力确实大幅增加;然而,它们仍然低于
乌得勒支大学哥白尼可持续发展研究所。 Princetonlaan 8a, 3584, CB,乌得勒支,荷兰 b 代尔夫特理工大学土木工程与地球科学学院基础设施设计与管理科,Stevinweg 1, 2628 CN,代尔夫特,荷兰 c 锡根大学艺术与人文学院社会科学系,Adolf-Reichwein-Straße 2, 57068,锡根,德国 d ECOLOG 社会生态研究与教育研究所,Wichernstraße 34, 21335,吕讷堡,德国 e 吕讷堡大学,可持续性治理研究所,Universit ¨ atsallee 1, 21335,吕讷堡,德国 f 慕尼黑工业大学巴伐利亚公共政策学院,Richard-Wagner-Straße 1, 80333 Muenchen,德国 g 高级可持续性研究中心, Berliner Str. 130, 14467 Potsdam, 德国 h 柏林工业大学环境经济与环境政策系,Straße des 17. Juni 135, 10623, Berlin, 德国
图1。NPC的延迟移植可改善势后的长期移植物存活。(a)示意图显示了实验设计。免疫缺陷rag2 - / - 小鼠在1 dpi(急性)或7 dpi(延迟)处局部移植Rfluc表达NPC的局部移植。(b)激光多普勒成像证实中风后脑血流(CBF)减少。(c)中风诱导后2小时对CBF进行定量。(d)代表性的生物发光成像(BLI)说明了两组选定时间点的6周内NPC存活。(e)两组移植后的前3天内对BLI信号的定量。(g)在移植后7天使用EDU掺入的增生评估的示意性时间表,在42天(急性)和35天(延迟)移植后移植时进行染色,以跟踪移植物增殖。(h)在移植后7天,在35 dpi(延迟)和42 dpi(急性)天以35 dpi(延迟)和42 dpi(急性)天的7天和KI67 + NPC对EDU + NPC进行定量的代表性免疫荧光图像。(j)显示具有多能标记Nanog,NPC标记PAX6,Neuronal标记NEUN和星形胶质细胞标记GFAP的表型面板。(k)移植后六周移植的NPC(HUNU+)的代表性免疫荧光图像。比例尺:50µm。(l)急性移植组中移植物组成的定量。数据显示为平均分布,其中红点表示平均值。框图表示数据的25%至75%四分位数。总共使用了8只动物,每组4只动物。箱形图:图中的每个点代表一种动物。线图被绘制为平均值±SEM。使用未配对的Mann-Whitney U检验(C和E)或未配对的t检验(I)评估平均差异的显着性。统计显着性设置为 *,p <0.05; **,p <0.01; ***,p <0.001。
特征迅速的固定是伊利诺伊州蜻蜓该属的唯一物种。它长约两英寸,在被其黑色尖端栖息的翅膀栖息时很容易被识别。胸部在蓝色的奶油色上具有复杂的黑色图案。腹部在其底部为黄色,主要是黑色的,背面有小黄色斑点。暗翼尖端和腹部颜色将其与蓝色仪表板(Pachydiplax longipennis)区分开。
截至 2021 年 11 月 1 日,共有 15,436,455 人被确定为已完全接种 COVID-19 疫苗,中位随访时间为 149 天(IQR:107-179)。在该人群中,共有 577245 人(<4%)报告 SARS-CoV-2 检测呈阳性。每 1000 年的患者随访时间,相应的发病率为 98.02(95% CI 97.9-98.15)。有 16,120 例 COVID-19 相关住院病例、1,100 例 COVID-19 重症监护入院患者和 3,925 例 COVID-19 相关死亡病例;相应的发病率分别为 2.72(95% C 2.7-2.74)、0.19(95% C 0.18-0.19)和 0.66(95% C 0.65-0.67)。按初始优先组细分时,养老院和 80 岁以上人群的住院率和死亡率较高。COVID-19 突破性发病率最高的合并症包括慢性肾病、透析、移植、血液系统恶性肿瘤和免疫功能低下。
背景 黄热病是由黄热病毒 (YFV) 引起的一种急性出血性疾病,黄热病毒是黄热病毒属的核糖核酸病毒成员。它通过受感染的伊蚊属和趋血蚊属的蚊子传播给人类,这些蚊子通过吸食受感染的人类或非人类灵长类动物而获得病毒 [1]。黄热病在非洲和中美洲和南美洲的热带地区流行,偶尔会爆发流行病。它会引起发烧、头痛、肌痛、关节痛、呕吐、黄疸型肝炎,并可能导致肾衰竭和出血综合症。在所有黄热病病例中,20% - 60% 的患者会死亡 [2]。目前尚无特定的抗病毒治疗方法。黄热病疫苗已存在 80 多年 [3],并已在许多流行国家成功用于控制该病。几乎所有接种疫苗的人只需一剂即可获得长期免疫 [1,4]。疫苗
在空间和航空电子应用程序的背景下,在很大程度上已知并研究了总电离剂量(TID)辐射对金属氧化物半导体(MOS)电路的影响。多年来,人们已经知道,诸如X射线之类的高能辐射可以用作诱导扰动到电路的均值,从而可能影响在恶劣环境中运行的系统的可靠性和安全性[1]。但是,直到最近才透露,从安全的角度来看,它们也可能成为威胁。[2]中介绍的作品证明了使用基于同步加速器的纳米焦点X射线梁的单晶体管级攻击的性能。在[3]中提出了进一步的进步,该进步证明了使用简单的实验室X射线源进行此类攻击的可行性。钨或带有微观孔的铅膜,使用聚焦离子束(FIB)钻孔,可以沉积在目标电路上。只有与孔对齐的区域暴露于X射线,从而可以控制所选区域的照明。该技术和整个论文的考虑故障模型是半永久性故障模型。n型MOS可以被迫进入永久导电状态,而P型MOS可以被迫进入永久的开放状态。这种效果仍然是可逆的,可以通过简单的热退火处理来恢复电路的正常状态。半永久性断层与瞬态注射方法(如激光或EM)不同,依赖于氧化物水平上电荷的积累以生效,从而引入了降低X射线束的时间分辨率的时间不精确因素。当前,仅探索了对内存的攻击,因为它们不需要时间同步,但是在展示更高级攻击之前可能只是时间问题。