(a)客户声明(b)支持显示资金/服务源/性质的文件,即以下任何一个: - 接受的采购订单 - 配置发票/费用声明 - 协议/合同票据,指定审议金额。- Email/Fax from the remitter mentioning the details of the order - Other equivalent document(s) 26 P1004 Legal services (A) Amount up to USD 100,000 or equivalent: No Supporting documents required (B) Amount more than USD 100,000 or equivalent, supporting documents displaying the source/nature of funds/services is required, i.e.以下任何一个: - 接受的采购订单 - 配置发票/费用声明 - 协议/合同票据,指定审议金额。- 来自汇款的电子邮件/传真,提及订单的详细信息 - 其他等效文档
全球汽车供应商正在接受针对电线线束制造中这些挑战的最先进解决方案。这涉及高级机械和创新胶带的强大组合。此磁带组合包括半自动化和完全自动化过程的选项。这些产品旨在优化特定的生产步骤 - 例如,机器人连续录音或录音。TESA®的胶带线轴长达3,000米,这可以通过使制造商减少切换材料的停机时间来提高效率。他们也经过专门设计,可以在不磨损的情况下提供一致稳定的放松力量。此投资组合中的每个TESA®胶带都符合DIN 72036自动线束生产标准的期望。
摘要在50年前,当最初将电线拉测试方法添加到MIL-STD 883中时,在方法D的条件D条件D条件D条件D中,键强度(破坏性键拉测试),测试程序和最小拉力值是基于大多数超声楔键合的拉力测试,仅是几个不同直径的超声楔形铝和金线。将原始数据的最小拉力值推断为覆盖金线和铝线的较宽的电线直径范围。自从这种测试方法发布以来,电子产业已经生产了铜超声楔键,大约15年前采用了大约15年前的铜热球键合,甚至开发了银热球球键的利基市场。该行业还建立了特殊债券,例如安全债券,反向债券也称为“球上的针迹”,甚至是多环线和丝带。在所有时间里,均未对2011年方法中的测试程序和最小拉力值进行审查,以确定它们对这些新材料或新型债券的适当性,即使该行业对所有人都广泛提及了测试方法,因此,默认情况下,该行业接受了所有人的使用。2013年底,我领导了JEDEC的JC14.1小组委员会,包装设备的可靠性测试方法,以更新JEDEC JESD22-B116,Ball Bond剪切剪切测试方法,以扩大其范围,以包括Cu Ball Bonds的剪切。工作组花了三年时间来解决必要的技术问题,以确保修订后的测试方法充分解决了铜球债券的剪切,并提出了最低可接受的剪切值。关键词工作组通过图纸和图像制作了一个大大改进的文档,描绘了黄金和铜键的不同剪切失败模式,并添加了几个信息丰富的附件,以帮助执行测试方法。到2018年,显然,电子行业中最常见的电线拉力测试方法都没有在更新其文档以包括CU线债券方面取得任何重大进展。因此,JC14.1工作组同意与JC-13.7小组委员会(新的电子设备技术)共同合作,以在JC14.1下创建一个新的,拉力拉力测试方法文档,该文档将成为JESD22-B116的伴侣。此新文档将使用2011,条件C和D作为基础,但在其范围上扩展以覆盖超声波楔和热球键的铜线键。新的测试方法将描述Ball Pull测试的过程和针脚拉的测试,该过程通过AEC Q006引用了铜键,使用铜(CU)电线互连对组件的资格要求。测试方法还将提供有关如何对当今使用的几种不同键类型进行拉力测试的指导,包括反向键,多环键和堆叠的模具。工作组计划提出JC14.1将在JESD47中引用的铜线键的最小拉值,这是集成电路的压力测试驱动的资格。After the joint working group completes its work, which is targeted for some time in 2022, JC13.7 would then be able to use the output of this working group to update Method 2011 Conditions C & D. This paper will first briefly discuss the updates made to B116 to cover Cu wire bonds, but mainly focus on the work that has so far been completed by the joint working group, including a general outline of the proposed new document, JESD22-B120, Wire Bond Pull Test 方法 。
增材制造 (AM) 技术在金属 3D 打印过程中的灵活性已引起研究和工业界的广泛关注,该技术可用于制造复杂且精密的近净成形 (NNS) 几何设计。实现电弧增材制造 (WAAM) 部件的预期特性主要取决于对重要加工变量的仔细选择和精确控制,包括焊珠沉积策略、焊丝材料、热源类型、焊丝送料速度和保护气体的应用。因此,优化这些最重要的工艺参数的方法已得到改进,从而生产出更高质量的 WAAM 制造部件。因此,这有助于该方法的普及度和许多应用的全面提升。本文旨在概述 WAAM 中的焊丝沉积策略和工艺参数的优化。总结了制造高质量增材制造金属部件所需的 WAAM 方法中的多种线材沉积技术和工艺参数的优化。提出了 WAAM 优化算法,并预测了技术发展。随后,讨论了在快速发展的 WAAM 领域中 WAAM 优化的潜力。最后,从所审查的研究工作中得出结论。
Gedik Welding 是 Gedik Holding 旗下子公司,于 1963 年在土耳其成立。如今,该公司已成为焊接耗材和设备领域的全球行业领导者,产品出口到全球 100 多个国家。Gedik Welding 生产各种焊接耗材、机器和设备,并提供机器人和自动化定制解决方案。Gedik Welding 还通过与伊斯坦布尔 Gedik 大学合作开展的研发项目,为焊接科学和技术的进步做出贡献,以促进其合作伙伴的发展并提供有效的解决方案。
楔形键合机使用超声波能量将金属线键合到金属基板上,整个过程仅需几毫秒。在大批量生产中,故障会导致停机和成本增加。在线监控系统用于减少故障并确定根本原因。我们开发并测试了一种算法来对超声波线键合生产中的异常值进行分类。该算法用于大型线楔形键合机,以测量和分析过程信号并检测和分类键合异常值。它可以帮助键合机操作员、生产主管和工艺工程师检测工艺偏差并解决潜在的根本原因。该算法测量键合信号,例如变形、超声波电流和超声波频率。根据键合顺序和工艺参数,键合会自动分为子组,然后对子组内的信号进行归一化。对于异常值分类,从归一化信号中提取特征并将其组合成故障类别值。污染、无线、高变形、线错位和基板不稳定等故障类别是独立计算的。我们测量了大型铝线键合故障类别的检测率,并演示了该算法如何根据信号计算故障类别值。此外,我们还展示了如何定义新的信号特征和故障类别来检测特定于生产或罕见的故障类别。关键词楔形键合机、超声波引线键合、异常值分类、键合故障、检测算法。
摘要:在所有金属增材制造 (AM) 技术中,定向能量沉积 (DED) 技术,尤其是基于丝材的技术,由于生产速度快而备受关注。此外,它们被认为是能够生产全功能结构部件、具有复杂几何形状和几乎无限尺寸的近净成形产品的最快技术。根据热源的不同,有几种基于丝材的系统,例如等离子弧焊和激光熔化沉积。主要缺点是缺乏市售的丝材;例如,缺乏高强度铝合金丝材。因此,本综述涵盖了传统的和创新的丝材生产工艺,并总结了工业上最受关注的 Al-Cu-Li 合金,以鼓励和促进选择最合适的丝材成分。每种合金元素的作用对于 WAAM 中的特定丝材设计都至关重要;本综述描述了每种元素的作用(通常通过时效硬化、固溶和晶粒尺寸减小来强化),特别关注锂。同时,WAAM 部件中的缺陷限制了其适用性。因此,本文提到了与 WAAM 工艺相关的所有缺陷以及与合金化学成分相关的缺陷。最后,总结了未来的发展,包括最适合 Al-Cu-Li 合金的技术,例如 PMC(脉冲多控制)和 CMT(冷金属转移)。
[2] S. M. Thompson,L。Bian,N。Shamsaei和A. Yadollahi,“添加剂制造的直接激光沉积概述;第一部分:运输现象,建模和诊断,” Addive Manufacturing,第1卷。8,pp。36-62,2015年10月。[3] V. T. Le,H。Paris和G. Mandil,“使用增材和减法制造技术的直接零件再利用策略的制定”,《增材制造》,第1卷。22,pp。687-699,2018年8月。[4] V. T. Le,H。Paris和G. Mandil,“在再制造环境中合并添加剂和减法制造技术的过程计划”,《制造系统杂志》,第1卷。44,否。1,pp。243-254,2017年7月。[5] A. Ramalho,T。G. Santos,B。Bevans,Z。Smoqi,P。Rao和J. P. Oliveira,“污染对316L不锈钢线和ARC添加性生产过程中声学发射的影响”,Addived Manufacturing,第1卷。51,第1条。102585,2022年3月。[6] S. Li,J。Y. Li,Z。W. Jiang,Y。Cheng,Y。Z. Li,S。Tang等人,“控制Inconel 625的定向能量沉积期间的柱状到等式的过渡”,Addy Manufacturing,第1卷。57,第1条。102958,2022年9月。[7] T. A. Rodrigues,N。Bairrão,F。W。C. Farias,A。Shamsolhodaei,J。Shen,J。Shen,N。Zhou等人,“由Twin-Wire和Arc添加剂制造(T-WAAM)生产的钢 - Copper功能渐变的材料(T-WAAM)”,材料&Designs,第1卷。213,第1条。110270,2022年1月。66,否。8,pp。1565-1580,2022年8月。32,否。[8] V. T. Le,D。S. Mai,M。C. Bui,K。Wasmer,V。A. Nguyen,D。M. Dinh等,“过程参数和热周期的影响,对308L不锈钢墙的质量,该材料由添加剂生产产生的308L不锈钢墙,使用弧形焊接来源,使用弧形焊接源,焊接,焊接,焊接,”。[9] D. Jafari,T。H。J. Vaneker和I. Gibson,“电线和电弧添加剂制造:控制制造零件的质量和准确性的机遇和挑战”,《材料与设计》,第1卷。202,第1条。109471,2021年4月。[10] S. W. Williams,F。Martina,A。C. Addison,J。Ding,G。Pardal和P. Colegrove,“ Wire + Arc添加剂制造”,《材料科学与技术》,第1卷。7,pp。641-647,2016。[11] W. E. Frazier,“金属添加剂制造:评论”,《材料工程与性能杂志》,第1卷。23,否。6,pp。1917-1928,2014年6月。[12] J. Xiong,Y。Li,R。Li和Z. Yin,“过程参数对基于GMAW的添加剂制造中多层单频薄壁零件的表面粗糙度的影响”,《材料加工技术杂志》,第1卷。252,pp。128-136,2018年2月。[13] V. T. Le,“基于气体弧焊接的金属零件添加剂制造的初步研究”,VNUHCM科学技术杂志,第1卷。23,否。1,pp。422-429,2020年2月。58,否。4,pp。461-472,2020年7月。[15] W. Jin,C。Zhang,S。Jin,Y。Tian,D。Wellmann和W. Liu,“不锈钢的电弧添加剂制造:审查”,《应用科学》,第1卷。[14] V. T. Le,Q。H。Hoang,V。C. Tran,D。S. Mai,D。M. Dinh和T. K. Doan,“焊接电流对由薄壁低碳构建的形状和微观结构形成的影响,由电线添加剂制造建造的薄壁低碳零件”,《越南科学和技术杂志》,第1卷。10,否。5,第1条。1563,2020年3月。[16] T. A. Rodrigues,V。Duarte,J。A. Avila,T。G。Santos,R。M。Miranda和J. P. Oliveira,“ HSLA钢的电线和弧添加剂制造:热循环对微结构和机械性能的影响”,《增材制造》,第1卷。27,pp。440-450,2019年5月。[17] J. G. Lopes,C。M。Machado,V。R。Duarte,T。A。Rodrigues,T。G。Santos和J. P. Oliveira,“铣削参数对电线和弧添加剂生产产生的HSLA钢零件的影响(WAAM)”,《制造工艺杂志》,第1卷。59,pp。739-749,2020年11月。[18] A. V. Nemani,M。Ghaffari和A. Nasiri,“通过传统滚动与电线弧添加剂制造制造的船建造钢板的微观结构特性和机械性能的比较,”添加剂制造业,第1卷。32,第1条。101086,2020年3月。[19] P. Dirisu,S。Ganguly,A。Mehmanparast,F。Martina和S. Williams,“对线 +电线 + ARC添加剂生产的高强度高强度低合金结构钢组件的裂缝韧性分析”,材料科学与工程:A,第1卷,第1卷。765,第1条。138285,2019年9月。787,第1条。139514,2020年6月。[20] L. Sun,F。Jiang,R。Huang,D。Yuan,C。Guo和J. Wang,“各向异性机械性能和低碳高强度钢分量由Wired and Arc添加剂制造制造的低强度钢组件的变形行为”,材料科学和工程学:A,A,第1卷。[21] https://doi.org/10.1007/s11665-022-06784-7
型号i rms(amps)OCL(MH min)最大DCR(MΩ)电感差(UH MAX)SQ1515VA203 1.5 20 390 200 SQ1515VA103 1.5 10 360 200 SQ151515VA852 200 SQ1515HA103 1.5 10 360 200 SQ1515HA852 1.8 8.5 170 200 SQ1515 HA552 2.5 5.5 5.5 115 200
一般说明顶部触点精密电线键键电阻器是超稳定性的,具有高可靠性。电阻器被修剪为紧密的耐受性。该值的可自定义值和唯一标记。此设备构建于0202芯片轮廓,非常适合但不限于混合电路应用。