1949 年,心理学家唐纳德·赫布提出了他令人信服的“组装理论”,解释了大脑如何实现这一壮举。该理论可以用一句口头禅来概括:“一起激发的神经元会连接在一起”。该理论认为,对相同刺激作出反应的神经元会优先连接在一起,形成“神经元集合”。这些关联通过突触介导,突触是神经元之间进行交流的微小连接,它们会随着经验而改变,从而在学习和记忆中发挥关键作用。根据赫布理论,激活一些选定的神经元就足以触发整个神经元集合,从而为记忆回忆提供了一个推定的解释。然而,由于连接在一起的神经元会更多地一起激发,因此赫布集合在计算机模拟中经常会因活动爆发而失败,而在神经生物学中很少观察到这种不稳定性。这种差异提出了一个问题:如何将赫布理论与解剖学上合理的电路机制相协调,以提供快速的记忆回忆。
成本降低是最近向CU线键合的主要驱动力,主要是AU线粘结。包装的其他成本降低来自基板和铅框架的新开发项目,例如预镀框(PPF)和QFP和QFN的UPPF降低了镀层和材料成本。但是,由于粗糙的smface饰面和薄板厚度,第二个键(针键键)在某些新的LeadFrame类型上可能更具挑战性。pd涂层的Cu(PCC),以通过裸铜线改善电线键合工艺,主要是为了提高可靠性并增强了S TCH键过程。需要进行更多的FTMDAMENTALS研究来了解粘结参数和粘结工具的影响以提高针迹键合性。在本研究中研究了Au/Ni/pd镀的四型扁平铅(QFN)PPF底物上直径为0.7 mil的PCC电线的针键键过程。两个具有相同几何形状但不同的s脸的胶囊用于研究Capillruy Smface饰面对针键键过程的影响。两种毛细血管类型是一种抛光的饰面类型,用于AU线键合,而颗粒•饰面毛细管具有更粗糙的smface fmish。比较铅(NSOL)ATLD SH01T尾巴之间的过程窗口。研究了过程参数的影响,包括粘结力和表SCMB扩增。过程窗口测试结果表明,颗粒毛细管具有较大的过程窗口,并且SH01T尾巴OCCTM的机会较低。在所有三个Pru·emeter套件中,颗粒状的毛细血管均显示出更高的粘结质量。较高的SCMB振幅增加了成功SS的机会 - 填充针键键的fonnation。ftnther比较了毛细血管smface饰面,3组参数se ttings ttings ttings ttings具有不同的键atld scmb a振幅ru·e测试。与抛光类型相比,Grrumlru·capillruy产生了更高的针迹拉力强度。开发了该过程的有限元模型(FEM),以更好地了解实验性OB使用。从TL1E模型中提取了电线和亚种界面处的电线的Smface膨胀(塑性脱节),并归因于粘附程度(键合)。该模型用于与不同的Smface饰面相连(键合)的实验观察。
Space Wire 框图包含以下内容: • 2 x LVDS 链路:用于与 Space Wire 网络进行通信 • 三个主连接,用于 Space Wire 外设与芯片其余部分(处理器、内存和外设)之间的通信 – Rx1 用于接收 Space Wire 帧 – Tx1 用于传输 Space Wire 帧 – 远程内存访问协议 (RMAP) 用于接收 RMAP 命令。如果满足配置条件,它会自动接受命令并发送回复(如果请求) • 内部路由器将 Space Wire 数据包从源(SpaceWire 链路、RMAP 和发射器)重定向到目标(SpaceWire 链路、RMAP 和接收器) • TCH 块支持 Space Wire 时间码帧
绝缘子粘合胶的粘合强度 (又称搭接剪切强度) 会降低,在高于其额定值的温度下会开裂并最终脱落。搭接剪切强度是衡量胶粘剂粘合强度的标准指标。它取决于胶粘剂在施加剪切力 (平行于粘合表面的力) 时将两个表面粘合在一起的能力。对于绝缘子粘合胶,保持高搭接剪切强度至关重要,因为它能确保绝缘层即使在物理应力下也能保持粘合。但是,在超过胶粘剂规定额定值的温度下,胶粘剂的聚合物结构会开始降解。这种降解有多种形式:软化、聚合物链之间失去粘结力,甚至粘合材料发生化学变化。
V 型切口切割器 ................................................................................................................................................................................................................46 T ® -Cutter Lite ......................................................................................................................................................................................................47 T ® -Cutter ......................................................................................................................................................................................................47 Data T ® -Cutter ....................................................................................................................................................................................47 MiniLite-Strip ™ 光纤剥线器 .............................................................................................................................................................48 Reflex ™ Premium T ® -Stripper 电线剥线器 .............................................................................................................................................48 T ® -Stripper 电线剥线器 .............................................................................................................................................................................48 可调刀片剥线器 .............................................................................................................................................................................49 IDEAL Gripper ™ 废料清除器 .............................................................................................................................................................49
起重机操作。如果使用和维护得当,钢丝绳是一种非常有用且使用寿命长的结构元件。因此,钢丝绳安全是(或应该是)钢丝绳操作员和安全部门持续关注的问题。起重机钢丝绳的安全使用直接取决于钢丝绳的状况,以及及时可靠的钢丝绳检查。本研究重点是摩洛哥使用的起重机钢丝绳的故障分析。本文研究并介绍了钢丝绳的钢丝缺陷和状况。特别注意可能导致内部损坏的情况,例如钢丝断线、磨损以及腐蚀。在此应用中,已使用各种无损检测方法来控制钢丝绳,例如目视检查、射线照相和电磁。无损检测的结果使得确定绳索的安全状态并建立预防性维护程序以延长绳索的使用寿命成为可能。结论是,必须根据不同绳索应用中的退化机制来确定维护、检查和丢弃政策。
摘要:脱碳是材料表面在高温氧化环境中发生的一种不希望出现的碳损失现象。钢在热处理后的脱碳问题已被广泛研究和报道。然而,到目前为止,还没有关于增材制造零件脱碳的系统研究。电弧增材制造 (WAAM) 是一种生产大型工程零件的高效增材制造工艺。由于 WAAM 生产的零件通常尺寸较大,因此使用真空环境来防止脱碳并不总是可行的。因此,有必要研究 WAAM 生产零件的脱碳问题,尤其是在热处理工艺之后。本研究使用打印材料和在不同温度(800 ◦ C、850 ◦ C、900 ◦ C 和 950 ◦ C)下热处理不同时间(30 分钟、60 分钟和 90 分钟)的样品研究了 WAAM 生产的 ER70S-6 钢的脱碳情况。此外,使用 Thermo-Calc 计算软件进行数值模拟,以预测钢在热处理过程中的碳浓度分布。发现脱碳不仅发生在热处理样品中,而且发生在打印部件的表面上(尽管使用氩气进行保护)。发现脱碳深度随着热处理温度或持续时间的增加而增加。在最低温度 800 ◦ C 下仅热处理 30 分钟的部件具有约 200 µ m 的较大脱碳深度。对于相同的 30 分钟加热时间,温度从 150 ◦ C 升至 950 ◦ C,脱碳深度急剧增加 150% 至 500 µ m。这项研究很好地证明了需要进一步研究以控制或最大限度地减少脱碳,从而确保增材制造工程部件的质量和可靠性。
摘要:在所有金属添加剂制造(AM)技术中,有向能量存储(DED)技术,尤其是基于电线的技术,由于其快速产生而引起了人们的极大兴趣。此外,它们被认为是能够生产功能齐全的结构零件,具有复杂几何形状和几乎无限尺寸的近网状产品的最快技术。根据热源,有几种基于电线的系统,例如等离子体弧焊接和激光熔点沉积。主要缺点是缺乏市售的电线;对于说明,没有高强度铝合金线。因此,本综述涵盖了电线生产的常规和创新过程,并包括具有最大工业兴趣的Al-Cu-Li合金的摘要,以使最适合和促进最合适的电线组合物的选择。每个合金元件的作用是WAAM特定线设计的关键;这篇综述描述了每个元素的作用(通常通过年龄硬化,实心解决方案和谷物尺寸减少来加强),并特别注意锂。同时,WAAM部件中的缺陷限制了其适用性。出于这个原因,提到了与WAAM过程有关的所有缺陷,以及与合金的化学组成相关的缺陷。最后,总结了未来的发展,其中包括针对Al-Cu-Li合金的最合适技术,例如PMC(Pulse Multicontrol)和CMT(冷金属传递)。
钻孔注意事项 ................................................................................................................ 4-20 电缆架和线槽 .............................................................................................................. 4-26 支撑类型 ........................................................................................................................ 4-33 安装线槽 ........................................................................................................................ 4-41 配线架 ........................................................................................................................ 4-45 导管 ........................................................................................................................ 4-47 设施接地 ................................................................................................................ 4-57 设施接地系统 ........................................................................................................ 4-58 屏蔽 ........................................................................................................................ 4-59 直流电源系统 ........................................................................................................ 4-60 交流电源 ........................................................................................................ 4-68 设备标记 ........................................................................................................ 4-100 通信变电站 ......................................................................................................
钻孔注意事项 ................................................................................................................ 4-20 电缆架和线槽 .............................................................................................................. 4-26 支撑类型 ........................................................................................................................ 4-33 安装线槽 ........................................................................................................................ 4-41 配线架 ........................................................................................................................ 4-45 导管 ........................................................................................................................ 4-47 设施接地 ................................................................................................................ 4-57 设施接地系统 ........................................................................................................ 4-58 屏蔽 ........................................................................................................................ 4-59 直流电源系统 ........................................................................................................ 4-60 交流电源 ........................................................................................................ 4-68 设备标记 ........................................................................................................ 4-100 通信变电站 ......................................................................................................