连续变量 (CV) 量子密钥分发 (QKD) 为安全量子通信提供了强大的环境,这要归功于使用室温现成的光学设备并且有可能达到比标准离散变量对应物高得多的速率。在本文中,我们提供了一个通用框架,用于研究在各方经历的损失和噪声的不同信任级别下,使用高斯调制相干态协议的 CV-QKD 的可组合有限尺寸安全性。我们的论文考虑了有线(即基于光纤)和无线(即自由空间)量子通信。在后一种情况下,我们表明在具有固定和移动设备的安全量子网络中,短距离光学无线 (LiFi) 可以实现高密钥速率。最后,我们将研究扩展到微波无线 (WiFi),讨论 CV-QKD 在极短距离应用中的安全性和可行性。
8 全面与进步跨太平洋伙伴关系协定(CPTPP)是加拿大与印度太平洋地区其他 10 个国家之间达成的自由贸易协定:澳大利亚、文莱、智利、日本、马来西亚、墨西哥、新西兰、秘鲁、新加坡和越南。2023 年 7 月 16 日,CPTPP 成员国与英国签署了加入议定书。加拿大-欧盟全面经济贸易协定是加拿大与欧盟之间的双边协议。该协议几乎涵盖了加拿大与欧盟贸易的所有部门和方面,目的是消除或减少壁垒。
5 https://www.interaction-design.org/literature/article/the-concept-oc-------------------------------------------------------------------------triune-brain(上次访问,2024年8月30日)。 6 Pam Rutledge,增强现实的说服力,数字行为心理学(2002),https://www.pamelarutledge.com/resources/arsources/articles/the-persuasive-persuasive-impact-ompact-og------------------------------------------------------ 7理解爬行动物的大脑:进化的遗产,民族人类神经干细胞资源(2023年5月9日),https://www.nhnscr.org/blog/blog/blog/understanding-the-poptilian-brain-brain-brain-evolutions-legacy/。 8 Chloe Bennett,什么是新皮层? ,新闻医疗(2023年3月13日),https://www.news-medical.net/health/what-is-the-neocortex.aspx。 9边缘系统,克利夫兰诊所(2024年4月6日)https://my.clevelandclinic.org/health/body/lody/limbic- System。 10上文,注5(“大脑成像的现代进步表明大脑的各个区域在原始,情感和理性的经历中都很活跃。5 https://www.interaction-design.org/literature/article/the-concept-oc-------------------------------------------------------------------------triune-brain(上次访问,2024年8月30日)。6 Pam Rutledge,增强现实的说服力,数字行为心理学(2002),https://www.pamelarutledge.com/resources/arsources/articles/the-persuasive-persuasive-impact-ompact-og------------------------------------------------------7理解爬行动物的大脑:进化的遗产,民族人类神经干细胞资源(2023年5月9日),https://www.nhnscr.org/blog/blog/blog/understanding-the-poptilian-brain-brain-brain-evolutions-legacy/。8 Chloe Bennett,什么是新皮层?,新闻医疗(2023年3月13日),https://www.news-medical.net/health/what-is-the-neocortex.aspx。9边缘系统,克利夫兰诊所(2024年4月6日)https://my.clevelandclinic.org/health/body/lody/limbic- System。10上文,注5(“大脑成像的现代进步表明大脑的各个区域在原始,情感和理性的经历中都很活跃。这些发现导致拒绝了麦克林在神经科学中的三位一体大脑的概念。但是,尽管该模型无疑是一个过度简化的,但
•随着连接到网络的设备数量的增加,您需要快速扩展校园网络而不增加复杂性。许多物联网设备的网络功能有限,并且需要跨建筑物和校园的第2层邻接。传统上,通过使用基于数据平面的洪水和以太网交换技术固有的学习机制在端点之间扩展VLAN来解决此问题。传统的以太网切换方法效率低下,因为它利用广播和多播技术宣布媒体访问控制(MAC)地址。也很难管理,因为您需要配置和手动管理VLAN以将其扩展到新的网络端口。当您考虑物联网和移动性的爆炸性增长时,这个问题会增加多重。
Chakit Arora,1 Marin Matic,1 Luisa Bisceglia,1 Pierluigi di Chiarum,2 Natalia de Oliveira Rosa,1 Francesco Carli,1 Lauren Clubb,1 Lorenzo Amir Nemati Fard,1 Giorgos Kargas,1 Giargas,1 Giande R.Dia luia R.Dia luia R.Dia。 Licata, 5 Guanming Wu, 6 Gioacchino Natoli, 2 J. Silvio Gutkind, 3, * and Francesco Raimondi 1,1,7, * 1 Laboratory of BIOLOGY BIOLOGY@SNS, SHRTHERSIAL SCHOOL, Piazza dei Cavalieri 7, 56126 PISA, Italy 2 Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan,意大利3加州大学圣地亚哥分校的药理学和摩尔癌中心,加利福尼亚州拉霍亚,加利福尼亚州92093,使用4比桑大学医院 - 大学,通过罗马,67,56126 PISA,PISA,意大利PISA,意大利PISA 5俄勒冈州健康与科学大学的流行病学,俄勒冈州波特兰,使用7铅联系 *corpsponcence:sgutkind@health.ucsd.edu(J.S.G.),francesco.raimondi@sns.it(f.r。) https://doi.org/10.1016/j.xgen.2024.100557https://doi.org/10.1016/j.xgen.2024.100557
自从本书的第一版出版以来,技术已经在教室中迅速扩展,这是受到沉浸在技术领域的学生的欢迎。尽管我们应该欢迎技术对增强教学的积极挑战,但我们应该继续对其对发展中的大脑的影响保持警惕。我在这本书中报告的大部分内容都是个人经验,轶事报告以及有关人类大脑如何因促进技术的影响而变化的研究。此处的信息基于科学研究和对大脑功能以及我们学习方式的知识。从不断增长的研究中得出的结果表明,由于大脑与我们的技术世界的相互作用,大脑正在改变自己。
Sousa博士编辑了科学书籍,并发表了数十篇有关专业发展,科学教育和教育研究期刊的文章。 他对教育工作者最受欢迎的书籍包括大脑的学习方式,现在是第六版的。特殊需求如何学习,第二版;有天赋的大脑如何学习;大脑如何学习阅读,第二版;大脑如何影响行为; ELL大脑如何学习;分化与大脑,第二版(与Carol Tomlinson一起);以及大脑如何学习数学,第二版,由独立书籍出版商协会选为最好的专业发展书籍之一。 领导力的大脑为教育工作者提出了更有效领导学校的方法。 他的书籍以法语,西班牙语,中文,阿拉伯语,韩语,俄语和其他几种语言出版。 他的书脑工作:我们如何领导他人的神经科学是为商业和组织领导者写的。Sousa博士编辑了科学书籍,并发表了数十篇有关专业发展,科学教育和教育研究期刊的文章。他对教育工作者最受欢迎的书籍包括大脑的学习方式,现在是第六版的。特殊需求如何学习,第二版;有天赋的大脑如何学习;大脑如何学习阅读,第二版;大脑如何影响行为; ELL大脑如何学习;分化与大脑,第二版(与Carol Tomlinson一起);以及大脑如何学习数学,第二版,由独立书籍出版商协会选为最好的专业发展书籍之一。领导力的大脑为教育工作者提出了更有效领导学校的方法。他的书籍以法语,西班牙语,中文,阿拉伯语,韩语,俄语和其他几种语言出版。他的书脑工作:我们如何领导他人的神经科学是为商业和组织领导者写的。
人类心脏类器官在心血管疾病建模和人类多能干细胞衍生的心肌细胞 (hPSC-CM) 移植方面具有巨大潜力。在这里,我们展示了用导电硅纳米线 (e-SiNW) 设计的心脏类器官显著增强了 hPSC-CM 治疗梗塞心脏的治疗效果。我们首先证明了 e-SiNW 的生物相容性及其改善健康大鼠心肌中心脏微组织植入的能力。然后用 hPSC-CM、非肌细胞支持细胞和 e-SiNW 设计纳米线人类心脏类器官。非肌细胞支持细胞促进心脏类器官的更高缺血耐受性,而 e-SiNW 显著改善了电起搏能力。移植到缺血/再灌注损伤的大鼠心脏后,纳米线心脏类器官显著改善了移植 hPSC-CM 的收缩发育,诱导了强大的心脏功能恢复,并减少了适应不良的左心室重塑。与使用相同损伤模型的当代研究相比,使用低 20 倍剂量的 hPSC-CM 实现了更大的功能恢复,揭示了导电纳米材料和人类心脏类器官之间的治疗协同作用,可有效修复心脏。
摘要:复发儿童急性淋巴细胞白血病(CALL)的患者的预后仍然很差。治疗失败的主要原因是耐药性,最常见于糖皮质激素(GC)。泼尼松龙敏感和耐药性淋巴细胞之间的分子差异未得到充分研究,从而排除了新型和靶向疗法的发展。因此,这项工作的目的是阐明匹配的GC敏感和耐药细胞系之间分子差异的至少某些方面。为解决这个问题,我们进行了整合的转录组和代谢组学分析,该分析表明,缺乏对泼尼松龙的反应可能是由于氧化磷酸化,糖溶解,氨基酸,丙酮酸和核苷酸生物合成的变化而受到的基础,以及MTORC1和MyC的激活以及Myc的激活,以及Myc的激活,以及Myc的激活。试图通过三种不同的策略探索我们分析中抑制一种打击的潜在治疗作用,以三种不同的策略为目标,它们针对谷氨酰胺 - 谷氨酸 - α-酮戊二酸轴轴,所有策略都受损了,这些策略都受损了,这些策略受损,线粒体呼吸和ATP产生和诱导了凋亡。因此,我们报告说,泼尼松龙的抗性可能伴随着相当大的转录和生物合成程序的重新布线。在这项研究中确定的其他可药物靶标的抑制作用抑制谷氨酰胺代谢在GC敏感的敏感性中呈现了一种潜在的治疗方法,但更重要的是,在GC耐药的呼叫细胞中。最后,在复发的背景下,这些发现可能在临床上具有相关性 - 在公开可用的数据集中,我们发现基因表达模式表明,体内耐药性的特征在于与我们在体外模型中发现的相似代谢失调。