糖尿病是全球普遍存在的公共卫生问题,影响着全世界数百万人(1)。2021年,全球约有5.37亿人患有糖尿病(2)。糖尿病对全球南方国家的影响尤为严重(3)。非洲地区受影响尤其严重,估计有2360万成年人患有糖尿病。然而,该地区各国的糖尿病患病率有所不同(4)。埃塞俄比亚是一个全球南方国家,是非洲糖尿病患者最多的五个国家之一,2021年约有192万人(5)。不受控制的糖尿病,其特征是血糖水平升高,会严重影响整体健康(6)。如果不加以控制,会导致大血管或微血管并发症,影响身体的多个系统,例如糖尿病视网膜病变等(2、7)。糖尿病视网膜病变的特征是视网膜血管受损 ( 8 ),它是最常见的微血管并发症之一,也是糖尿病患者视力丧失的主要原因 ( 9 , 10 )。此外,不受控制的糖尿病会对其他器官和系统产生不利影响,增加患心脏病、中风、肾衰竭、神经病变和下肢截肢的风险,从而影响个人的生活质量,导致医疗成本增加和社会经济负担 ( 7 , 11 )。全球约三分之一的糖尿病患者患有不同程度的糖尿病视网膜病变 ( 12 )。在非洲,糖尿病视网膜病变的患病率为 7.0 至
Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.
•是通过S'训练的学习模型•火车测试拆分的想法独立验证集纠正预测错误•无论预测器有多糟糕,都无偏见;一个好的模型降低方差
●SIPA教师顾问,Christine Capilouto教授对Capstone项目的指导和监督。●尼日利亚的农村电气化机构(REA)在我们在尼日利亚逗留期间的热情款待 - 安排对Petti和Toto的现场访问,提供他们对迷你网格的见解,并将团队与其他利益相关者联系起来。特别感谢David Otu的勤奋努力和与REA的有效沟通,以确保富有成效的国内访问。●哥伦比亚大学的国际公共事务学院(SIPA)提供了有关旅行物流的财务支持和指导●尼日利亚政府的专家和从业人员,非营利组织,公司和多边组织以及学术界,并咨询了学术界,以分享他们的宝贵知识和专业知识。
4 md.devendran@gmail.com摘要:慢性肾脏病(CKD)是一个重大的全球健康问题,通常导致肾脏衰竭,需要昂贵的医疗治疗,例如透析或移植。早期检测CKD对于及时干预和改善患者预后至关重要。 该项目旨在开发基于机器学习的预测模型,以便在早期诊断CKD。 通过利用一系列临床特征,例如年龄,血压,血糖和其他相关的生物标志物,我们采用机器学习算法,包括决策树,随机森林和支持向量机(SVM),以预测患者开发CKD的患者的可能性。 本研究中使用的数据集包括具有各种肾脏状况的患者的病历,并应用了诸如归一化和缺失数据处理的预处理技术以确保模型的鲁棒性。 使用诸如准确性,精度,召回和F1得分等指标评估模型的性能,以确保可靠的预测。 这种方法不仅旨在提高诊断准确性,而且还提供了一个数据驱动的解决方案,以帮助医疗保健专业人员做出明智的决策。 该项目的结果可以有助于更好地管理CKD,最终有助于减轻医疗保健系统的负担并改善患者护理。早期检测CKD对于及时干预和改善患者预后至关重要。该项目旨在开发基于机器学习的预测模型,以便在早期诊断CKD。通过利用一系列临床特征,例如年龄,血压,血糖和其他相关的生物标志物,我们采用机器学习算法,包括决策树,随机森林和支持向量机(SVM),以预测患者开发CKD的患者的可能性。本研究中使用的数据集包括具有各种肾脏状况的患者的病历,并应用了诸如归一化和缺失数据处理的预处理技术以确保模型的鲁棒性。使用诸如准确性,精度,召回和F1得分等指标评估模型的性能,以确保可靠的预测。这种方法不仅旨在提高诊断准确性,而且还提供了一个数据驱动的解决方案,以帮助医疗保健专业人员做出明智的决策。该项目的结果可以有助于更好地管理CKD,最终有助于减轻医疗保健系统的负担并改善患者护理。
糖尿病中的慢性高血糖状态导致葡萄糖和蛋白质,DNA和脂质之间的共价加合物通过称为Maillard反应的非酶过程形成。此过程导致形成高级糖基化末端产品(年龄)。3晚期终端产物是不可逆的大分子,并通过年龄受体(RAGE)发挥其生物学活性。4年龄之间的相互作用与愤怒之间的相互作用破坏了内皮细胞中氧化 - 还原反应,并触发炎症和血栓形成反应。狂暴,高度涉及促炎性反应和自身免疫性,有助于糖尿病血管病,炎症和动脉粥样硬化过程的进展。5,6此外,年龄段轴可导致活性氧(ROS)的产生增加,而低密度脂蛋白(LDL)的氧化,加剧的斑块形成。7
医学教育是一个复杂而艰巨的过程,要求学生在临床前和临床领域获得大量的知识和技能 [1]。近年来,人工智能 (AI) 已被提出作为提高医学教育成果的潜在解决方案。AI 在医学教育中的一种应用是使用智能辅导系统,该系统为个别学生提供个性化的反馈和指导 [2]。本研究的目的是探索 AI 辅导系统在学习医学临床前和临床领域(特别是在药理学领域)中的应用。智能辅导系统在医学教育中的整合具有多种优势 [3]。这些系统支持个性化辅导,系统可以评估学生的知识水平并确定需要进一步强化的领域 [4]。当学生参与建议的活动时,可以调整难度级别,并根据他们的优势和劣势提供指导。这些系统被集成到学习管理系统中,学习管理系统已经历了显著的增长。
无人驾驶汽车(UAV)技术的成熟和可伸缩性为彻底彻底迅速交付提供了变化的机会。本研究探讨了将无人机与公共交通工具(PTV)整合在一起,以建立一种新颖的交付范式,从而增强了公共交通运营商的收入,并提高了运输系统的效率,而不会损害乘客的便利或运营效率。采用六边形规划技术,本研究确定并量化了PTV的可用时空资源以进行无人机集成。这涉及将迅速交付订单的时空动态与PTV乘客的临时动态保持一致,该动态基于北京海德地区的现场数据。利用这些输出,我们定量分析将无人机与PTV集成在增加公共交通收入以及减少碳排放和缓解拥塞的潜力的好处。此外,我们通过预测未来的交付需求增加来量化UAV-PTV集成的长期收益。基于获得的定量结果,本研究讨论了实用和政策的影响,以支持无人机与PTV的可持续融合。
浓度不平等作为许多独立随机变量功能的尾巴概率上的上限。在组合优化问题上说明了浓度不平等的范围。详细描述了伯恩斯坦不等式的路径,强调了一个事实,即随机变量的对数宽带变换上的良好界限为尾巴概率提供了指数界限。本课程的主要主题将是伯恩斯坦式不平等的推导,用于一般功能。martingales方法提供了构建伯恩斯坦样不平等的一般配方。与Martingales相关的指数性超级马丁甲公司以有限的增量相关联,可以重新确定著名的有限差异不平等。尽管并且由于其普遍性,但使用Martingale方法可能很难。这促使搜索更具用户友好的方法,例如(例如)熵方法。Efron-Stein不等式说明了熵方法中的第一步。后者的不等式在独立随机变量的一般函数的方差上提供了一般且通常很紧的上限。在组合优化问题上首先说明了Efron-Stein结合。
联合学习(FL)促进了客户在培训共享的机器学习模型的情况下合作,而无需公开各个私人数据。尽管如此,FL仍然容易受到效用和隐私攻击的影响,特别是逃避数据中毒和建模反演攻击,从而损害了系统的效率和数据隐私。现有的范围通常专门针对特定的单一攻击,缺乏普遍性和全面的防守者的观点。为了应对这些挑战,我们介绍了f ederpography d efense(FCD),这是一个统一的单框架,与辩护人的观点保持一致。FCD采用基于行的转座密码加密,并使用秘密钥匙来对抗逃避黑框数据中毒和模型反转攻击。FCD的症结在于将整个学习过程转移到加密的数据空间中,并使用由Kullback-Leibler(KL)差异引导的新型蒸馏损失。此措施比较了本地预审最终的教师模型对正常数据的预测以及本地学生模型对FCD加密形式相同数据的预测的概率分布。通过在此加密空间中工作,FCD消除了服务器上的解密需求,从而导致了计算复杂性。我们证明了FCD的实践可行性,并将其应用于对基准数据集(GTSRB,KBTS,CIFAR10和EMNIST)上的Evasion实用程序攻击。我们进一步扩展了FCD,以抵御CI-FAR100数据集中的Split FL中的模型反转攻击。与第二最佳方法相比,我们在各种攻击和FL设置中进行的实验表明了对效用逃避(影响> 30)和隐私攻击(MSE> 73)的实际可行性和巨大性。
