22次干旱在加利福尼亚州经历了从2012年至2016年经历记录的最严重的干旱后不到五年。气候建模表明,干旱将变得更加严重和频繁。此外,2022年2月发表的研究表明,北美西南部目前正在过去1200年中遇到最糟糕的“大型摩根大草原”。这项研究估计(基于气候模型),气候变化占该巨大严重程度的42%,而当前的大型摩根大放异彩不是“大型摩根大草原”,而是气候变化(Williams,Cook和Smerdon,2022年)。回应2020-22的干旱以及对气候变化将进一步挑战加利福尼亚水管理方式的方式的认识,Newsom Administment在2022年8月发布了一项战略(“加利福尼亚的供水策略,适应更热,更干燥的未来”)。该策略旨在解决由于气候变化,到2040年,预计供水减少(600万英亩至900万英亩水)。
摘要:尽管大豆蛋白质量很高,但由于 Kunitz (KTi) 和 Bowman-Birk 蛋白酶抑制剂 (BBis) 的存在,生大豆和豆粕不能直接添加到动物饲料混合物中,这会降低动物的生产率。热处理可以显著灭活胰蛋白酶和糜蛋白酶抑制剂 (BBis),但这种处理耗能大、成本高,并对种子蛋白的质量产生负面影响。作为一种替代方法,我们采用 CRISPR/Cas9 基因编辑来在 BBi 基因中产生突变,从而大幅降低大豆种子中的蛋白酶抑制剂含量。农杆菌介导的转化被用于产生几个稳定的转基因大豆事件。使用 Sanger 测序、蛋白质组学分析、胰蛋白酶/糜蛋白酶抑制剂活性测定和 qRT-PCR 将这些独立的 CRISPR/Cas9 事件与野生型植物进行了比较。总的来说,我们的结果表明,影响大豆主要 BBi 基因的一系列等位基因功能丧失突变的产生。两个高表达种子特异性 BBi 基因的突变导致胰蛋白酶和糜蛋白酶抑制剂活性大幅降低。
为确保患有罕见疾病的人获得所需的治疗,安德森说,过去的努力包括罕见的疾病咨询委员会,该委员会是由佛罗里达州立法机关在2021年成立的,以建议佛罗里达卫生部如何改善患有罕见疾病的佛罗里达人的健康状况。
I.简介锂离子电池的经典Doyle-Fuller-Newman(DFN)电化学模型[10,14,30],其中包括反馈结构和状态空间。通过将快速双层电容动力学分为模型[31]来得出公式。识别非线性电池模型的固有反馈结构为使用输入输出系统理论[9,19]开辟了其分析的可能性。模型分析的关键特征是它是可靠的,因为它不依赖于模型非线性(例如开路电位(OCP)曲线)的确切知识。因此,该公式可以允许“广义”分析,该分析适用于被动非线性的所有实例。本文的重点是通过考虑其模型方程中的结构,而不是通过提出新的电化学来促进基础DFN模型的使用。希望此处开发的结果能够使DFN模型用于更广泛的应用,例如在单个粒子模型[8]中观察到,并将揭示该模型的关键特征,以促进其开发并了解其对内部电化学的预测。锂离子电池是一种近乎无处不在的能量进程技术,可将出色的功率和能量密度结合到一种设备中。这导致了他们在许多领域的成功应用,包括混合动力汽车,个人电子产品和网格存储。但是,这些电池仍然不受几个局限性的影响,包括几百个电荷周期后的衰老开始,稳定性问题
玛丽在弗吉尼亚大学和伦敦建筑协会学习建筑学,并于 1988 年毕业。她在 Foster + Partners 工作了十多年,是那里的首批女性合伙人之一,并领导了包括毕尔巴鄂地铁(1995 年)和杜伊斯堡微电子中心(1996 年)在内的项目的设计团队。1999 年,玛丽加入 Walters & Cohen 建筑事务所担任董事,负责金丝雀码头的豪华水疗中心和住宅项目。2002 年,玛丽对景观建筑和建筑环境之间的关系产生了浓厚的兴趣,加入了 Gustafson Porter。2011 年,她成为创始合伙人,自 2017 年 1 月起,Gustafson Porter 更名为 Gustafson Porter + Bowman,以表彰玛丽的贡献。
1. 2017 年,欧洲议会在 2017 年 2 月 16 日的决议中提到了这三部定律,并向机器人民法规则委员会提出了建议。2018 OJ (C 252) 25。2020 年,一名法国议员提出一项法案草案,寻求将机器人三部定律编入法国宪法序言。Proposition de loi Constitutioneellerel à la Charte,Assemblée Nationale,2020,No. 2585 (Fr.)。2. 此外,细心的读者会知道,阿西莫夫几乎从不谈论人工智能,而是谈论机器人和正电子大脑。3. 阿西莫夫在他的职业生涯中写了大约 500 本书。S TANLEY A SIMOV,Y OURS,I SAAC A SIMOV,x (1996)。另请参阅 David Leslie, Isaac Asimov: centenary of the great explainer, 577 N ATURE 614 (2020)。值得注意的是,艾萨克·阿西莫夫出版了三本合集,庆祝他的第一百部作品(《艾萨克·阿西莫夫,O PUS 100》 (1969))、第二百部作品(《艾萨克·阿西莫夫,O PUS 200》 (1979))和第三百部作品(《艾萨克·阿西莫夫,O PUS 300》 (1984))的出版。阿西莫夫发表的第一篇短篇小说是 1939 年的《卡利斯坦的威胁》(最初名为《偷渡者》)。《艾萨克·阿西莫夫,早期的 A SIMOV 13》(1972 年)[以下简称《A SIMOV,早期的 A SIMOV》]。顺便说一下,这是阿西莫夫写的第二篇短篇小说(如果算上他写的短篇小说《小弟弟》,则是第三篇了,《小弟弟》发表在布鲁克林男子高中的文学评论中),第一篇是《宇宙开瓶器》(从未出版)。他的第一本书是《天空中的鹅卵石》(最初名为《和我一起变老》),出版于 1950 年 1 月 19 日。阿西莫夫,《天空中的鹅卵石》(1950 年)。参见阿西莫夫,《早期的阿西莫夫》。因此,阿西莫夫花了二十年时间出版了一百本书(1950-1969),花了十年时间出版了一百本(1969-1979),又花了五年时间出版了他的第三百本书(1979-1984)。 4. Giovanni Sartor,《信息社会中的人权:乌托邦、反乌托邦和人类价值观》,载《人权的哲学维度》,第 293 页(Claudio Corradetti 主编,2012 年)。另请参阅 Kieran Tranter,《生活在技术法律中:科幻小说和法律技术》(2018 年)。
摘要◥目的:因为BRCA1是一种高风险的乳腺/卵巢癌敏感性基因,所以不确定的临床意义(VUS)的BRCA1序列变体使遗传咨询变得复杂。大多数VU是罕见的,可靠的基于临床和遗传数据的分类。然而,所有病原BRCA1变体都分析了有缺陷的同源重组DNA修复(HRR)。因此,BRCA1 VU可以根据其对该途径的功能影响进行分类。Experimental Design: Two hundred thirty-eight BRCA1 VUS — comprising most BRCA1 VUS known in the Netherlands and Belgium — were tested for their ability to complement Brca1- de fi - cient mouse embryonic stem cells in HRR, using cisplatin and olaparib sensitivity assays and a direct repeat GFP (DR-GFP) HRR assay.使用25个已知良性和25个已知
上述这些研究线索有两个共同特点:过去十年来进展显著加速,以及与量子信息科学和量子多体物理学之间的联系日益深入和核心。这些进展令人欣慰,但仍有许多未解之谜。边界系统中典型状态的本体对偶是什么?这与引发这些发展的防火墙悖论 [ 34 ] 有何关系?黑洞奇点的本质是什么?它在这一思想圈中扮演什么角色?这些想法如何超越 AdS 时空,尤其是延伸到类似于我们世界的宇宙学?黑洞各个微观状态的本体解释是什么?是否有可能在实验室中构建模型系统,让我们能够通过实验深入了解其中的一些问题?
1. 执行摘要 当前,业界正在考虑的未来 HEP 设施(如μ子对撞机或下一代高能强子对撞机)将需要达到现有技术极限甚至超越现有技术能力的磁铁。从历史上看,先进磁铁技术的开发和成熟度展示可用于当前的 LHC 升级(称为高亮度 LHC 升级,HL- LHC),这得益于美国为期约 15 年的国家定向研发计划(称为 LHC 加速器研究计划,LARP)与通用和互补的研发工作(导体开发计划、通用加速器研发 GARD、大学计划等)的结合。在本白皮书中,我们建议建立一个类似的前沿技术和可行性指导计划(LEAF 计划),为在未来十年的时间范围内做出未来的对撞机决策做好准备。与其前身一样,LEAF 计划将依赖并协同目前美国由磁体开发计划 (MDP)、导体采购和研发 (CPRD) 计划和 HEP 办公室由早期职业奖 (ECA) 或实验室指导研发 (LDRD) 基金资助的其他活动所涵盖的通用研发工作。在可能的情况下,将强调与 DOE 或 NSF 其他办公室的协同努力的联系,并建议将其作为国家范围内更广泛的合作努力。国际努力也被提及为 LEAF 计划的潜在合作伙伴。我们设想 LEAF 计划将专注于展示用于 μ 子对撞机以及下一代高能强子对撞机的磁体的可行性,并在必要时并根据应用性质的要求,从研发模型过渡到长模型/原型。LEAF 计划将自然而然地推动加速器质量和实验界面设计方面的考虑。必要时,LEAF 还将专注于降低成本和/或工业化步骤。LEAF 计划预计将是一项为期十年的努力,始于 2024-2025 年左右,于 2034-2035 年左右完成。根据支持者的经验,我们建议 LEAF 计划的适当资助水平应为每年约 2500-3000 万美元,适用于所有参与者(美国国家实验室和大学)。
摘要 利用视觉元素和信息可视化的建模是重要领域,它们对许多领域的理解和计算机化进步做出了巨大贡献,但对法律和法律实践的益处仍未得到探索。本文探讨了通过使用可视化建模和信息可视化 (InfoVis) 来帮助获取法律知识、实践和知识形式化作为法律人工智能的基础,在立法和法律中建模和表达结构和流程的挑战。本文使用定义明确的统一建模语言 (UML) 的一个子集来直观地表达立法和法律的结构和流程,以创建称为法律地图的可视化流程图,这构成了进一步形式化的基础。通过为英国的产权转让实践和 1954 年《房东和租户法》创建一组法律地图,提出并评估了一种法律地图开发方法。本文是第一篇新型初步解决方案,可应用于从立法到实践的各个方面;并可加速法律人工智能的发展。